These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31963751)

  • 1. Human Body Mixed Motion Pattern Recognition Method Based on Multi-Source Feature Parameter Fusion.
    Song J; Zhu A; Tu Y; Wang Y; Arif MA; Shen H; Shen Z; Zhang X; Cao G
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A real-time stable-control gait switching strategy for lower-limb rehabilitation exoskeleton.
    Guo Z; Wang C; Song C
    PLoS One; 2020; 15(8):e0238247. PubMed ID: 32853239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on the Application of Multi-Source Information Fusion in Multiple Gait Pattern Transition Recognition.
    Guo C; Song Q; Liu Y
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Transformer-Based Neural Network for Gait Prediction in Lower Limb Exoskeleton Robots Using Plantar Force.
    Ren J; Wang A; Li H; Yue X; Meng L
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer.
    Xie H; Li G; Zhao X; Li F
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Motion Pattern Recognition and Feature Extraction: An Approach Using Multi-Information Fusion.
    Li X; Liu J; Huang Y; Wang D; Miao Y
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots.
    Jung JY; Heo W; Yang H; Park H
    Sensors (Basel); 2015 Oct; 15(11):27738-59. PubMed ID: 26528986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait Prediction and Variable Admittance Control for Lower Limb Exoskeleton With Measurement Delay and Extended-State-Observer.
    Chen Z; Guo Q; Li T; Yan Y; Jiang D
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8693-8706. PubMed ID: 35302939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion.
    Dehzangi O; Taherisadr M; ChangalVala R
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Millimeter-Wave Array Radar-Based Human Gait Recognition Using Multi-Channel Three-Dimensional Convolutional Neural Network.
    Jiang X; Zhang Y; Yang Q; Deng B; Wang H
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terrain Feature Estimation Method for a Lower Limb Exoskeleton Using Kinematic Analysis and Center of Pressure.
    Shim M; Han JI; Choi HS; Ha SM; Kim JH; Baek YS
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A pace recognition method for exoskeleton wearers based on support vector machine-hidden Markov model].
    Hu D; Liu Z; Chen L; Wang Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):84-91. PubMed ID: 35231969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Evaluation of a Force Sensor-Controlled Upper-Limb Power-Assisted Exoskeleton with High Backdrivability.
    Liu C; Liang H; Ueda N; Li P; Fujimoto Y; Zhu C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Plantar Forces During Gait Using Wearable Sensors and Deep Neural Networks
    Nagashima M; Cho SG; Ding M; Garcia Ricardez GA; Takamatsu J; Ogasawara T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3629-3632. PubMed ID: 31946662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of Upper Limb Action Intention Based on IMU.
    Cui JW; Li ZG; Du H; Yan BY; Lu PD
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatio-Spectral Representation Learning for Electroencephalographic Gait-Pattern Classification.
    Goh SK; Abbass HA; Tan KC; Al-Mamun A; Thakor N; Bezerianos A; Li J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1858-1867. PubMed ID: 30106679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Multi-Information Fusion Method for Gait Phase Classification in Lower Limb Rehabilitation Exoskeleton.
    Zhang Y; Cao G; Ling Z; Li W; Cheng H; He B; Cao S; Zhu A
    Front Neurorobot; 2021; 15():692539. PubMed ID: 34795571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of Inertial Sensors in a Lower Limb Robotic Exoskeleton.
    Calle-Siguencia J; Callejas-Cuervo M; García-Reino S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.