BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31963796)

  • 1. Cross-Linked Cyclodextrins Bimetallic Nanocatalysts: Applications in Microwave-Assisted Reductive Aminations.
    Calcio Gaudino E; Acciardo E; Tabasso S; Manzoli M; Cravotto G; Varma RS
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31963796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-assisted direct transformation of amines to ketones using water as an oxygen source.
    Miyazawa A; Tanaka K; Sakakura T; Tashiro M; Tashiro H; Prakash GK; Olah GA
    Chem Commun (Camb); 2005 Apr; (16):2104-6. PubMed ID: 15846414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Pd/Fe3O4 nanoparticles by use of Euphorbia stracheyi Boiss root extract: A magnetically recoverable catalyst for one-pot reductive amination of aldehydes at room temperature.
    Nasrollahzadeh M; Sajadi SM
    J Colloid Interface Sci; 2016 Feb; 464():147-52. PubMed ID: 26615511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zwitterionic-surfactant-stabilized palladium nanoparticles as catalysts in the hydrogen transfer reductive amination of benzaldehydes.
    Drinkel EE; Campedelli RR; Manfredi AM; Fiedler HD; Nome F
    J Org Chem; 2014 Mar; 79(6):2574-9. PubMed ID: 24552129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A PdAg bimetallic nanocatalyst for selective reductive amination of nitroarenes.
    Li L; Niu Z; Cai S; Zhi Y; Li H; Rong H; Liu L; Liu L; He W; Li Y
    Chem Commun (Camb); 2013 Aug; 49(61):6843-5. PubMed ID: 23518781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive amination using cobalt-based nanoparticles for synthesis of amines.
    Murugesan K; Chandrashekhar VG; Senthamarai T; Jagadeesh RV; Beller M
    Nat Protoc; 2020 Apr; 15(4):1313-1337. PubMed ID: 32203487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave-Assisted Reductive Amination of Aldehydes and Ketones Over Rhodium-Based Heterogeneous Catalysts.
    Bucciol F; Gaudino EC; Villa A; Valsania MC; Cravotto G; Manzoli M
    Chempluschem; 2023 Mar; 88(3):e202300017. PubMed ID: 36971074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct one-pot reductive amination of aldehydes with nitroarenes in a domino fashion: catalysis by gum-acacia-stabilized palladium nanoparticles.
    Sreedhar B; Reddy PS; Devi DK
    J Org Chem; 2009 Nov; 74(22):8806-9. PubMed ID: 19842684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Step One-Pot Reductive Amination of Furanic Aldehydes Using CuAlO
    Nuzhdin AL; Bukhtiyarova MV; Bukhtiyarov VI
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33080807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron-catalyzed synthesis of secondary amines: on the way to green reductive aminations.
    Stemmler T; Surkus AE; Pohl MM; Junge K; Beller M
    ChemSusChem; 2014 Nov; 7(11):3012-6. PubMed ID: 25196429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot Reductive Amination of carbonyl Compounds with Nitro Compounds by Transfer Hydrogenation over Co-N
    Zhou P; Zhang Z
    ChemSusChem; 2017 May; 10(9):1892-1897. PubMed ID: 28345301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic Reductive Amination of Aldehydes and Ketones With Nitro Compounds: New Light on an Old Reaction.
    Sukhorukov AY
    Front Chem; 2020; 8():215. PubMed ID: 32351929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines.
    Murugesan K; Senthamarai T; Chandrashekhar VG; Natte K; Kamer PCJ; Beller M; Jagadeesh RV
    Chem Soc Rev; 2020 Sep; 49(17):6273-6328. PubMed ID: 32729851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in the Catalytic Reductive Amination of Furfural to Furfural Amine: The Momentous Role of Active Metal Sites.
    Saini MK; Kumar S; Li H; Babu SA; Saravanamurugan S
    ChemSusChem; 2022 Apr; 15(7):e202200107. PubMed ID: 35171526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-Assisted Dehydrogenative Cross Coupling Reactions in γ-valerolactone with a Reusable Pd/β-cyclodextrin Crosslinked Catalyst.
    Tabasso S; Gaudino EC; Acciardo E; Manzoli M; Giacomino A; Cravotto G
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30646596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-Doped Carbon-Supported Nickel Nanoparticles: A Robust Catalyst to Bridge the Hydrogenation of Nitriles and the Reductive Amination of Carbonyl Compounds for the Synthesis of Primary Amines.
    Zhang Y; Yang H; Chi Q; Zhang Z
    ChemSusChem; 2019 Mar; 12(6):1246-1255. PubMed ID: 30600939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expedited palladium-catalyzed amination of aryl nonaflates through the use of microwave-irradiation and soluble organic amine bases.
    Tundel RE; Anderson KW; Buchwald SL
    J Org Chem; 2006 Jan; 71(1):430-3. PubMed ID: 16388678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Catalytic Advances on the Sustainable Production of Primary Furanic Amines from the One-Pot Reductive Amination of 5-Hydroxymethylfurfural.
    Truong CC; Mishra DK; Suh YW
    ChemSusChem; 2023 Jan; 16(1):e202201846. PubMed ID: 36354122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tandem oxidative processes catalyzed by polymer-incarcerated multimetallic nanoclusters with molecular oxygen.
    Miyamura H; Kobayashi S
    Acc Chem Res; 2014 Apr; 47(4):1054-66. PubMed ID: 24661043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.
    Liang G; Wang A; Li L; Xu G; Yan N; Zhang T
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):3050-3054. PubMed ID: 28156045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.