These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31964084)

  • 41. Standalone anion- and co-doped titanium dioxide nanotubes for photocatalytic and photoelectrochemical solar-to-fuel conversion.
    Ding Y; Nagpal P
    Nanoscale; 2016 Oct; 8(40):17496-17505. PubMed ID: 27714097
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pt/TiO
    Lakshmanareddy N; Navakoteswara Rao V; Cheralathan KK; Subramaniam EP; Shankar MV
    J Colloid Interface Sci; 2019 Mar; 538():83-98. PubMed ID: 30500470
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides.
    Indra A; Menezes PW; Sahraie NR; Bergmann A; Das C; Tallarida M; Schmeißer D; Strasser P; Driess M
    J Am Chem Soc; 2014 Dec; 136(50):17530-6. PubMed ID: 25469760
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New Magnetically Recyclable Reduced Graphene Oxide rGO/MFe
    Bagherzadeh M; Kaveh R
    Photochem Photobiol; 2018 Nov; 94(6):1210-1224. PubMed ID: 29968351
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation, characterization, evaluation and mechanistic study of organic polymer nano-photocatalysts for solar fuel production.
    Pavliuk MV; Wrede S; Liu A; Brnovic A; Wang S; Axelsson M; Tian H
    Chem Soc Rev; 2022 Aug; 51(16):6909-6935. PubMed ID: 35912574
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Graphene-Based Materials as Efficient Photocatalysts for Water Splitting.
    Albero J; Mateo D; García H
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30841539
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ferrite Materials for Photoassisted Environmental and Solar Fuels Applications.
    Garcia-Muñoz P; Fresno F; de la Peña O'Shea VA; Keller N
    Top Curr Chem (Cham); 2019 Dec; 378(1):6. PubMed ID: 31840192
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.
    Li J; Li H; Zhan G; Zhang L
    Acc Chem Res; 2017 Jan; 50(1):112-121. PubMed ID: 28009157
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation.
    Sun J; Qiao L; Sun S; Wang G
    J Hazard Mater; 2008 Jun; 155(1-2):312-9. PubMed ID: 18164810
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ag/Ag2SO3 plasmonic catalysts with high activity and stability for CO2 reduction with water vapor under visible light.
    Wang D; Yu Y; Zhang Z; Fang H; Chen J; He Z; Song S
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18369-78. PubMed ID: 27282369
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Facile and Large-Area Preparation of Porous Ag
    Cao Q; Yu J; Yuan K; Zhong M; Delaunay JJ
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19507-19512. PubMed ID: 28560876
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasmon-Enhanced Solar Water Splitting on Metal-Semiconductor Photocatalysts.
    Zheng Z; Xie W; Huang B; Dai Y
    Chemistry; 2018 Dec; 24(69):18322-18333. PubMed ID: 30183119
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent advances in sensitized mesoscopic solar cells.
    Grätzel M
    Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced visible photocatalytic activity of cotton ball like nano structured Cu doped ZnO for the degradation of organic pollutant.
    Thennarasu G; Sivasamy A
    Ecotoxicol Environ Saf; 2016 Dec; 134(Pt 2):412-420. PubMed ID: 26560433
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst.
    Zou Z; Ye J; Sayama K; Arakawa H
    Nature; 2001 Dec; 414(6864):625-7. PubMed ID: 11740556
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Graphene oxide/α-Bi(2)O(3) composites for visible-light photocatalysis, chemical catalysis, and solar energy conversion.
    Som T; Troppenz GV; Wendt RR; Wollgarten M; Rappich J; Emmerling F; Rademann K
    ChemSusChem; 2014 Mar; 7(3):854-65. PubMed ID: 24578169
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tantalum-based semiconductors for solar water splitting.
    Zhang P; Zhang J; Gong J
    Chem Soc Rev; 2014 Jul; 43(13):4395-422. PubMed ID: 24668282
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of a Hierarchical TiO₂ Microsphere/Carbon Dots Photocatalyst for Oxygen Evolution and Dye Degradation Under Visible Light.
    Chandra S; Majee K; Mahto TK; Padhi SK; Sahu SK
    J Nanosci Nanotechnol; 2018 Feb; 18(2):1057-1065. PubMed ID: 29448532
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Degradation of organic dyes via bismuth silver oxide initiated direct oxidation coupled with sodium bismuthate based visible light photocatalysis.
    Yu K; Yang S; Liu C; Chen H; Li H; Sun C; Boyd SA
    Environ Sci Technol; 2012 Jul; 46(13):7318-26. PubMed ID: 22616904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.