These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31964242)

  • 1. Extinction pulse at Eocene-Oligocene boundary drives diversification dynamics of two Australian temperate floras.
    Nge FJ; Biffin E; Thiele KR; Waycott M
    Proc Biol Sci; 2020 Jan; 287(1919):20192546. PubMed ID: 31964242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenomics and continental biogeographic disjunctions: insight from the Australian starflowers (Calytrix).
    Nge FJ; Biffin E; Waycott M; Thiele KR
    Am J Bot; 2022 Feb; 109(2):291-308. PubMed ID: 34671970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three explanations for biodiversity hotspots: small range size, geographical overlap and time for species accumulation. An Australian case study.
    Cook LG; Hardy NB; Crisp MD
    New Phytol; 2015 Jul; 207(2):390-400. PubMed ID: 25442328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of a hotspot genus: geographic variation in speciation and extinction rates in Banksia (Proteaceae).
    Cardillo M; Pratt R
    BMC Evol Biol; 2013 Aug; 13():155. PubMed ID: 23957450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots.
    Cowman PF; Bellwood DR
    J Evol Biol; 2011 Dec; 24(12):2543-62. PubMed ID: 21985176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid in situ diversification rates in Rhamnaceae explain the parallel evolution of high diversity in temperate biomes from global to local scales.
    Tian Q; Stull GW; Kellermann J; Medan D; Nge FJ; Liu SY; Kates HR; Soltis DE; Soltis PS; Guralnick RP; Folk RA; Onstein RE; Yi TS
    New Phytol; 2024 Feb; 241(4):1851-1865. PubMed ID: 38229185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primate diversification inferred from phylogenies and fossils.
    Herrera JP
    Evolution; 2017 Dec; 71(12):2845-2857. PubMed ID: 28913907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fossils and a large molecular phylogeny show that the evolution of species richness, generic diversity, and turnover rates are disconnected.
    Xing Y; Onstein RE; Carter RJ; Stadler T; Peter Linder H
    Evolution; 2014 Oct; 68(10):2821-32. PubMed ID: 25041629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperate radiations and dying embers of a tropical past: the diversification of Viburnum.
    Spriggs EL; Clement WL; Sweeney PW; Madriñán S; Edwards EJ; Donoghue MJ
    New Phytol; 2015 Jul; 207(2):340-354. PubMed ID: 25644136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting patterns of radiation in African and Australian Restionaceae.
    Linder HP; Eldenäs P; Briggs BG
    Evolution; 2003 Dec; 57(12):2688-702. PubMed ID: 14761050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass turnover and recovery dynamics of a diverse Australian continental radiation.
    Brennan IG; Oliver PM
    Evolution; 2017 May; 71(5):1352-1365. PubMed ID: 28213971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lineage Diversity and Size Disparity in Musteloidea: Testing Patterns of Adaptive Radiation Using Molecular and Fossil-Based Methods.
    Law CJ; Slater GJ; Mehta RS
    Syst Biol; 2018 Jan; 67(1):127-144. PubMed ID: 28472434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifts in diversification rates and clade ages explain species richness in higher-level sedge taxa (Cyperaceae).
    Escudero M; Hipp A
    Am J Bot; 2013 Dec; 100(12):2403-11. PubMed ID: 24249788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presence in Mediterranean hotspots and floral symmetry affect speciation and extinction rates in Proteaceae.
    Reyes E; Morlon H; Sauquet H
    New Phytol; 2015 Jul; 207(2):401-410. PubMed ID: 25537140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macroevolutionary Patterns of Flowering Plant Speciation and Extinction.
    Vamosi JC; Magallón S; Mayrose I; Otto SP; Sauquet H
    Annu Rev Plant Biol; 2018 Apr; 69():685-706. PubMed ID: 29489399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae).
    Rix MG; Cooper SJB; Meusemann K; Klopfstein S; Harrison SE; Harvey MS; Austin AD
    Mol Phylogenet Evol; 2017 Apr; 109():302-320. PubMed ID: 28126515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Causes of plant diversification in the Cape biodiversity hotspot of South Africa.
    Schnitzler J; Barraclough TG; Boatwright JS; Goldblatt P; Manning JC; Powell MP; Rebelo T; Savolainen V
    Syst Biol; 2011 May; 60(3):343-57. PubMed ID: 21362644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconciling diversification: random pulse models of speciation and extinction.
    Ricklefs RE
    Am Nat; 2014 Aug; 184(2):268-76. PubMed ID: 25058286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications.
    Tank DC; Eastman JM; Pennell MW; Soltis PS; Soltis DE; Hinchliff CE; Brown JW; Sessa EB; Harmon LJ
    New Phytol; 2015 Jul; 207(2):454-467. PubMed ID: 26053261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. As old as the mountains: the radiations of the Ericaceae.
    Schwery O; Onstein RE; Bouchenak-Khelladi Y; Xing Y; Carter RJ; Linder HP
    New Phytol; 2015 Jul; 207(2):355-367. PubMed ID: 25530223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.