These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31964304)

  • 1. Redirection of ambient light improves predator detection in a diurnal fish.
    Santon M; Bitton PP; Dehm J; Fritsch R; Harant UK; Anthes N; Michiels NK
    Proc Biol Sci; 2020 Jan; 287(1919):20192292. PubMed ID: 31964304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small benthic fish strike at prey over distances that fall within theoretical predictions for active sensing using light.
    Neiße N; Santon M; Bitton PP; Michiels NK
    J Fish Biol; 2020 Oct; 97(4):1201-1208. PubMed ID: 33448392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Daytime eyeshine contributes to pupil camouflage in a cryptobenthic marine fish.
    Santon M; Bitton PP; Harant UK; Michiels NK
    Sci Rep; 2018 May; 8(1):7368. PubMed ID: 29743512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual modelling supports the potential for prey detection by means of diurnal active photolocation in a small cryptobenthic fish.
    Bitton PP; Yun Christmann SA; Santon M; Harant UK; Michiels NK
    Sci Rep; 2019 May; 9(1):8089. PubMed ID: 31147614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scorpionfish rapidly change colour in response to their background.
    John L; Santon M; Michiels NK
    Front Zool; 2023 Mar; 20(1):10. PubMed ID: 36864453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A context analysis of bobbing and fin-flicking in a small marine benthic fish.
    Santon M; Deiss F; Bitton PP; Michiels NK
    Ecol Evol; 2021 Feb; 11(3):1254-1263. PubMed ID: 33598128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled iris radiance in a diurnal fish looking at prey.
    Michiels NK; Seeburger VC; Kalb N; Meadows MG; Anthes N; Mailli AA; Jack CB
    R Soc Open Sci; 2018 Feb; 5(2):170838. PubMed ID: 29515824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optic-nerve-transmitted eyeshine, a new type of light emission from fish eyes.
    Fritsch R; Ullmann JFP; Bitton PP; Collin SP; Michiels NK
    Front Zool; 2017; 14():14. PubMed ID: 28261313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fish with red fluorescent eyes forage more efficiently under dim, blue-green light conditions.
    Harant UK; Michiels NK
    BMC Ecol; 2017 Apr; 17(1):18. PubMed ID: 28427391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Vertical Positioning as Anti-Predator Behavior: The Case of a Prey Fish Cohabiting with Multiple Predatory Fish within Temperate Marine Algal Forests.
    Thiriet PD; Di Franco A; Cheminée A; Mangialajo L; Guidetti P; Branthomme S; Francour P
    Animals (Basel); 2022 Mar; 12(7):. PubMed ID: 35405816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of eyeshine by flashlight fishes of the family Anomalopidae.
    Howland HC; Murphy CJ; McCosker JE
    Vision Res; 1992 Apr; 32(4):765-9. PubMed ID: 1413559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes.
    Higham TE; Stewart WJ; Wainwright PC
    Integr Comp Biol; 2015 Jul; 55(1):6-20. PubMed ID: 25980563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. More than meets the eye: Predator-induced pupil size plasticity in a teleost fish.
    Vinterstare J; Hulthén K; Nilsson DE; Nilsson PA; Brönmark C
    J Anim Ecol; 2020 Oct; 89(10):2258-2267. PubMed ID: 33460050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye fluke (Tylodelphys clavata) infection impairs visual ability and hampers foraging success in European perch.
    Vivas Muñoz JC; Bierbach D; Knopf K
    Parasitol Res; 2019 Sep; 118(9):2531-2541. PubMed ID: 31286263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trait-based diet selection: prey behaviour and morphology predict vulnerability to predation in reef fish communities.
    Green SJ; Côté IM
    J Anim Ecol; 2014 Nov; 83(6):1451-60. PubMed ID: 24861366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red fluorescence of the triplefin
    Bitton PP; Harant UK; Fritsch R; Champ CM; Temple SE; Michiels NK
    R Soc Open Sci; 2017 Mar; 4(3):161009. PubMed ID: 28405391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of selectivity in a nocturnal fish: a lack of active prey choice.
    Holzman R; Genin A
    Oecologia; 2005 Dec; 146(2):329-36. PubMed ID: 16086167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fish vision and the detection of planktonic prey.
    Hairston NG; Li KT; Easter SS
    Science; 1982 Dec; 218(4578):1240-2. PubMed ID: 7146908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the refractive state during prey capture under low light in the nocturnal cardinalfish Apogon annularis.
    Holzman R; Shashar N; Howland HC; Katzir G
    Vision Res; 2006 Jun; 46(13):2094-101. PubMed ID: 16483628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response.
    Miller JR; Ament JM; Schmitz OJ
    J Anim Ecol; 2014 Jan; 83(1):214-22. PubMed ID: 24028410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.