BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31964519)

  • 1. Direct muscle electrical stimulation as a method for the in vivo assessment of force production in m. abductor hallucis.
    Olivera ALP; Alzapiedi DF; Solan MC; Karamanidis K; Mileva KN; James DC
    J Biomech; 2020 Feb; 100():109606. PubMed ID: 31964519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A voluntary activation deficit in m. abductor hallucis exists in asymptomatic feet.
    Pérez Olivera AL; Solan MC; Karamanidis K; Mileva KN; James DC
    J Biomech; 2022 Jan; 130():110863. PubMed ID: 34844033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the abductor hallucis muscle on the medial arch of the foot: a kinematic and anatomical cadaver study.
    Wong YS
    Foot Ankle Int; 2007 May; 28(5):617-20. PubMed ID: 17559771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wide-pulse, high-frequency, low-intensity neuromuscular electrical stimulation has potential for targeted strengthening of an intrinsic foot muscle: a feasibility study.
    James DC; Solan MC; Mileva KN
    J Foot Ankle Res; 2018; 11():16. PubMed ID: 29755590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immediate effect of neuromuscular electrical stimulation on the abductor hallucis muscle: A randomized controlled trial.
    Shimoura K; Nishida Y; Abiko S; Suzuki Y; Zeidan H; Kajiwara Y; Harada K; Tatsumi M; Nakai K; Bito T; Yoshimi S; Kawabe R; Yokota J; Aoyama T
    Electromagn Biol Med; 2020 Oct; 39(4):257-261. PubMed ID: 32674613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle imbalance in hallux valgus: an electromyographic study.
    Arinci Incel N; Genç H; Erdem HR; Yorgancioglu ZR
    Am J Phys Med Rehabil; 2003 May; 82(5):345-9. PubMed ID: 12704272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of hallux sesamoid resection on the effective moment of the flexor hallucis brevis.
    Aper RL; Saltzman CL; Brown TD
    Foot Ankle Int; 1994 Sep; 15(9):462-70. PubMed ID: 7820237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Tendon transfers in postoperative hallux varus. Apropos of 12 cases].
    Maynou C; Beltrand E; Podglajen J; Elisé S; Mestdagh H
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Apr; 86(2):181-7. PubMed ID: 10804416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifications of baropodograms after transcutaneous electric stimulation of the abductor hallucis muscle in humans standing erect.
    Gaillet JC; Biraud JC; Bessou M; Bessou P
    Clin Biomech (Bristol, Avon); 2004 Dec; 19(10):1066-9. PubMed ID: 15531058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hip center location on the moment-generating capacity of the muscles.
    Delp SL; Maloney W
    J Biomech; 1993; 26(4-5):485-99. PubMed ID: 8478351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the length dependence of isometric force in human quadriceps muscles.
    Perumal R; Wexler AS; Ding J; Binder-Macleod SA
    J Biomech; 2002 Jul; 35(7):919-30. PubMed ID: 12052394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between the ankle joint angle and the maximum isometric force of the toe flexor muscles.
    Yamauchi J; Koyama K
    J Biomech; 2019 Mar; 85():1-5. PubMed ID: 30712779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human wrist motors: biomechanical design and application to tendon transfers.
    Loren GJ; Shoemaker SD; Burkholder TJ; Jacobson MD; Fridén J; Lieber RL
    J Biomech; 1996 Mar; 29(3):331-42. PubMed ID: 8850639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discharge properties of abductor hallucis before, during, and after an isometric fatigue task.
    Kelly LA; Racinais S; Cresswell AG
    J Neurophysiol; 2013 Aug; 110(4):891-8. PubMed ID: 23678020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences between measured and resultant joint moments during isometric contractions at the ankle joint.
    Arampatzis A; Morey-Klapsing G; Karamanidis K; DeMonte G; Stafilidis S; Brüggemann GP
    J Biomech; 2005 Apr; 38(4):885-92. PubMed ID: 15713310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The variation in the orientations and moment arms of the knee extensor and flexor muscle tendons with increasing muscle force: a mathematical analysis.
    Imran A; Huss RA; Holstein H; O'Connor JJ
    Proc Inst Mech Eng H; 2000; 214(3):277-86. PubMed ID: 10902442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large index-fingertip forces are produced by subject-independent patterns of muscle excitation.
    Valero-Cuevas FJ; Zajac FE; Burgar CG
    J Biomech; 1998 Aug; 31(8):693-703. PubMed ID: 9796669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency domain-based models of skeletal muscle.
    Baratta RV; Solomonow M; Zhou BH
    J Electromyogr Kinesiol; 1998 Apr; 8(2):79-91. PubMed ID: 9680948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isokinetic plantar flexion: experimental results and model calculations.
    Bobbert MF; van Ingen Schenau GJ
    J Biomech; 1990; 23(2):105-19. PubMed ID: 2312517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potential of human toe flexor muscles to produce force.
    Goldmann JP; Brüggemann GP
    J Anat; 2012 Aug; 221(2):187-94. PubMed ID: 22747582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.