BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31964601)

  • 1. Can intermediate-energy sources lead to elevated bone doses for prostate and head & neck high-dose-rate brachytherapy?
    Famulari G; Alfieri J; Duclos M; Vuong T; Enger SA
    Brachytherapy; 2020; 19(2):255-263. PubMed ID: 31964601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the impact of absorbed dose specification, tissue heterogeneities, and applicator heterogeneities on Monte Carlo-based dosimetry of Ir-192, Se-75, and Yb-169 in conventional and intensity-modulated brachytherapy for the treatment of cervical cancer.
    Morcos M; Viswanathan AN; Enger SA
    Med Phys; 2021 May; 48(5):2604-2613. PubMed ID: 33619739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microdosimetric Evaluation of Current and Alternative Brachytherapy Sources-A Geant4-DNA Simulation Study.
    Famulari G; Pater P; Enger SA
    Int J Radiat Oncol Biol Phys; 2018 Jan; 100(1):270-277. PubMed ID: 29102279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of high-dose rate prostate brachytherapy dose distributions with iridium-192, ytterbium-169, and thulium-170 sources.
    Krishnamurthy D; Weinberg V; Cunha JA; Hsu IC; Pouliot J
    Brachytherapy; 2011; 10(6):461-5. PubMed ID: 21397569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direction modulated brachytherapy (DMBT) for treatment of cervical cancer: A planning study with
    Safigholi H; Han DY; Mashouf S; Soliman A; Meigooni AS; Owrangi A; Song WY
    Med Phys; 2017 Dec; 44(12):6538-6547. PubMed ID: 28940520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dosimetric Considerations for Ytterbium-169, Selenium-75, and Iridium-192 Radioisotopes in High-Dose-Rate Endorectal Brachytherapy.
    Shoemaker T; Vuong T; Glickman H; Kaifi S; Famulari G; Enger SA
    Int J Radiat Oncol Biol Phys; 2019 Nov; 105(4):875-883. PubMed ID: 31330175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo calculation of the dose perturbations in a dual-source HDR/PDR afterloader treatment unit.
    Collins-Fekete CA; Plamondon M; Verhaegen F; Beaulieu L
    Brachytherapy; 2016; 15(4):524-530. PubMed ID: 27317950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose specification for ¹⁹²Ir high dose rate brachytherapy in terms of dose-to-water-in-medium and dose-to-medium-in-medium.
    Fonseca GP; Tedgren ÅC; Reniers B; Nilsson J; Persson M; Yoriyaz H; Verhaegen F
    Phys Med Biol; 2015 Jun; 60(11):4565-79. PubMed ID: 26009538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition.
    Landry G; Reniers B; Murrer L; Lutgens L; Gurp EB; Pignol JP; Keller B; Beaulieu L; Verhaegen F
    Med Phys; 2010 Oct; 37(10):5188-98. PubMed ID: 21089752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dosimetric comparison of 169Yb versus 192Ir for HDR prostate brachytherapy.
    Lymperopoulou G; Papagiannis P; Sakelliou L; Milickovic N; Giannouli S; Baltas D
    Med Phys; 2005 Dec; 32(12):3832-42. PubMed ID: 16475783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gadolinium-153 as a brachytherapy isotope.
    Enger SA; Fisher DR; Flynn RT
    Phys Med Biol; 2013 Feb; 58(4):957-64. PubMed ID: 23339848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel
    Famulari G; Duclos M; Enger SA
    Med Phys; 2020 Mar; 47(3):859-868. PubMed ID: 31828783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum RBE change in
    Nusrat H; Karim-Picco S; Pang G; Paudel M; Sarfehnia A
    Biomed Phys Eng Express; 2020 Jan; 6(1):015021. PubMed ID: 33438609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The difference of scoring dose to water or tissues in Monte Carlo dose calculations for low energy brachytherapy photon sources.
    Landry G; Reniers B; Pignol JP; Beaulieu L; Verhaegen F
    Med Phys; 2011 Mar; 38(3):1526-33. PubMed ID: 21520864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dosimetric characteristics, air-kerma strength calibration and verification of Monte Carlo simulation for a new Ytterbium-169 brachytherapy source.
    Perera H; Williamson JF; Li Z; Mishra V; Meigooni AS
    Int J Radiat Oncol Biol Phys; 1994 Mar; 28(4):953-70. PubMed ID: 8138449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interstitial rotating shield brachytherapy for prostate cancer.
    Adams QE; Xu J; Breitbach EK; Li X; Enger SA; Rockey WR; Kim Y; Wu X; Flynn RT
    Med Phys; 2014 May; 41(5):051703. PubMed ID: 24784369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dosimetric comparison of 169Yb and 192Ir for HDR brachytherapy of the breast, accounting for the effect of finite patient dimensions and tissue inhomogeneities.
    Lymperopoulou G; Papagiannis P; Angelopoulos A; Karaiskos P; Georgiou E; Baltas D
    Med Phys; 2006 Dec; 33(12):4583-9. PubMed ID: 17278810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broad-beam transmission data for new brachytherapy sources, Tm-170 and Yb-169.
    Granero D; Pérez-Calatayud J; Ballester F; Bos AJ; Venselaar J
    Radiat Prot Dosimetry; 2006; 118(1):11-5. PubMed ID: 16030058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of vaginal cylinder inhomogeneity on the HDR brachytherapy dose calculations using Monte Carlo simulations.
    Meftahi M; Song WY
    J Appl Clin Med Phys; 2024 Jan; 25(1):e14228. PubMed ID: 38043126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation the effect of a magnetic field on the dose distribution of I-125, Ir-192, Yb-169, and Co-60 brachytherapy sources by Monte Carlo simulation.
    Jafarzadeh N; Hejazi P; Tajik Mansoury MA; Khodabakhshi R; Riazi Z; Gholami S
    Appl Radiat Isot; 2022 Sep; 187():110332. PubMed ID: 35717903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.