These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 31964718)

  • 21. Detailed Dendritic Excitatory/Inhibitory Balance through Heterosynaptic Spike-Timing-Dependent Plasticity.
    Hiratani N; Fukai T
    J Neurosci; 2017 Dec; 37(50):12106-12122. PubMed ID: 29089443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic balance of excitation and inhibition rapidly modulates spike probability and precision in feed-forward hippocampal circuits.
    Wahlstrom-Helgren S; Klyachko VA
    J Neurophysiol; 2016 Dec; 116(6):2564-2575. PubMed ID: 27605532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Asynchronous and Coherent Dynamics in Balanced Excitatory-Inhibitory Spiking Networks.
    Bi H; di Volo M; Torcini A
    Front Syst Neurosci; 2021; 15():752261. PubMed ID: 34955768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integration of broadband conductance input in rat somatosensory cortical inhibitory interneurons: an inhibition-controlled switch between intrinsic and input-driven spiking in fast-spiking cells.
    Tateno T; Robinson HP
    J Neurophysiol; 2009 Feb; 101(2):1056-72. PubMed ID: 19091918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexible resonance in prefrontal networks with strong feedback inhibition.
    Sherfey JS; Ardid S; Hass J; Hasselmo ME; Kopell NJ
    PLoS Comput Biol; 2018 Aug; 14(8):e1006357. PubMed ID: 30091975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatiotemporal dynamics of optogenetically induced and spontaneous seizure transitions in primary generalized epilepsy.
    Wagner FB; Truccolo W; Wang J; Nurmikko AV
    J Neurophysiol; 2015 Apr; 113(7):2321-41. PubMed ID: 25552645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonhuman Primate Optogenetics: Recent Advances and Future Directions.
    Galvan A; Stauffer WR; Acker L; El-Shamayleh Y; Inoue KI; Ohayon S; Schmid MC
    J Neurosci; 2017 Nov; 37(45):10894-10903. PubMed ID: 29118219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Ultra-Sensitive Step-Function Opsin for Minimally Invasive Optogenetic Stimulation in Mice and Macaques.
    Gong X; Mendoza-Halliday D; Ting JT; Kaiser T; Sun X; Bastos AM; Wimmer RD; Guo B; Chen Q; Zhou Y; Pruner M; Wu CW; Park D; Deisseroth K; Barak B; Boyden ES; Miller EK; Halassa MM; Fu Z; Bi G; Desimone R; Feng G
    Neuron; 2020 Jul; 107(1):38-51.e8. PubMed ID: 32353253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-band oscillations emerge from a simple spiking network.
    Wu T; Cai Y; Zhang R; Wang Z; Tao L; Xiao ZC
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics.
    Ros E; Carrillo R; Ortigosa EM; Barbour B; Agís R
    Neural Comput; 2006 Dec; 18(12):2959-93. PubMed ID: 17052155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain.
    Krause MR; Vieira PG; Csorba BA; Pilly PK; Pack CC
    Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5747-5755. PubMed ID: 30833389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimized photo-stimulation of halorhodopsin for long-term neuronal inhibition.
    Zhang C; Yang S; Flossmann T; Gao S; Witte OW; Nagel G; Holthoff K; Kirmse K
    BMC Biol; 2019 Nov; 17(1):95. PubMed ID: 31775747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo.
    Bolus MF; Willats AA; Whitmire CJ; Rozell CJ; Stanley GB
    J Neural Eng; 2018 Apr; 15(2):026011. PubMed ID: 29300002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coherent and intermittent ensemble oscillations emerge from networks of irregular spiking neurons.
    Hoseini MS; Wessel R
    J Neurophysiol; 2016 Jan; 115(1):457-69. PubMed ID: 26561602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control strategies for underactuated neural ensembles driven by optogenetic stimulation.
    Ching S; Ritt JT
    Front Neural Circuits; 2013; 7():54. PubMed ID: 23576956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasticity, learning, and complexity in spiking networks.
    Kello CT; Rodny J; Warlaumont AS; Noelle DC
    Crit Rev Biomed Eng; 2012; 40(6):501-18. PubMed ID: 23356694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system.
    Inoue KI; Takada M; Matsumoto M
    Nat Commun; 2015 Sep; 6():8378. PubMed ID: 26387804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Creation of Neuronal Ensembles and Cell-Specific Homeostatic Plasticity through Chronic Sparse Optogenetic Stimulation.
    Liu B; Seay MJ; Buonomano DV
    J Neurosci; 2023 Jan; 43(1):82-92. PubMed ID: 36400529
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.