BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31964812)

  • 1. Superrepellency of underwater hierarchical structures on
    Xiang Y; Huang S; Huang TY; Dong A; Cao D; Li H; Xue Y; Lv P; Duan H
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2282-2287. PubMed ID: 31964812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of bio-inspired hierarchical structures in wetting.
    Grewal HS; Cho IJ; Yoon ES
    Bioinspir Biomim; 2015 Apr; 10(2):026009. PubMed ID: 25856043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography.
    Tricinci O; Terencio T; Mazzolai B; Pugno NM; Greco F; Mattoli V
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25560-7. PubMed ID: 26558410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructures of superhydrophobic plant leaves - inspiration for efficient oil spill cleanup materials.
    Zeiger C; Rodrigues da Silva IC; Mail M; Kavalenka MN; Barthlott W; Hölscher H
    Bioinspir Biomim; 2016 Aug; 11(5):056003. PubMed ID: 27529805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Salvinia-inspired surfaces for hydrodynamic drag reduction by capillary-force-induced clustering.
    Kim M; Yoo S; Jeong HE; Kwak MK
    Nat Commun; 2022 Sep; 13(1):5181. PubMed ID: 36056031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of a superhydrophobic surface with underwater air-retaining properties by electrostatic flocking.
    Zheng Y; Zhou X; Xing Z; Tu T
    RSC Adv; 2018 Mar; 8(20):10719-10726. PubMed ID: 35541509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of biomimetic superhydrophobic surfaces inspired by lotus leaf and silver ragwort leaf.
    Lin J; Cai Y; Wang X; Ding B; Yu J; Wang M
    Nanoscale; 2011 Mar; 3(3):1258-62. PubMed ID: 21270991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water.
    Barthlott W; Schimmel T; Wiersch S; Koch K; Brede M; Barczewski M; Walheim S; Weis A; Kaltenmaier A; Leder A; Bohn HF
    Adv Mater; 2010 Jun; 22(21):2325-8. PubMed ID: 20432410
    [No Abstract]   [Full Text] [Related]  

  • 9. Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure.
    Mayser MJ; Barthlott W
    Integr Comp Biol; 2014 Dec; 54(6):1001-7. PubMed ID: 24925548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.
    Latthe SS; Terashima C; Nakata K; Fujishima A
    Molecules; 2014 Apr; 19(4):4256-83. PubMed ID: 24714190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobic surfaces: from natural to biomimetic to functional.
    Guo Z; Liu W; Su BL
    J Colloid Interface Sci; 2011 Jan; 353(2):335-55. PubMed ID: 20846662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles.
    Ebert D; Bhushan B
    J Colloid Interface Sci; 2012 Feb; 368(1):584-91. PubMed ID: 22062688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air Retention under Water by the Floating Fern Salvinia: The Crucial Role of a Trapped Air Layer as a Pneumatic Spring.
    Gandyra D; Walheim S; Gorb S; Ditsche P; Barthlott W; Schimmel T
    Small; 2020 Oct; 16(42):e2003425. PubMed ID: 32996250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Underwater Air Layer Retention and Restoration on
    Zhang Y; Hu Y; Xu B; Fan J; Zhu S; Song Y; Cui Z; Wu H; Yang Y; Zhu W; Wang F; Li J; Wu D; Chu J; Jiang L
    ACS Nano; 2022 Feb; 16(2):2730-2740. PubMed ID: 35156798
    [No Abstract]   [Full Text] [Related]  

  • 15. A new method for producing "Lotus Effect" on a biomimetic shark skin.
    Liu Y; Li G
    J Colloid Interface Sci; 2012 Dec; 388(1):235-42. PubMed ID: 22995249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.
    Barthlott W; Mail M; Neinhuis C
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air bubble bursting effect of lotus leaf.
    Wang J; Zheng Y; Nie FQ; Zhai J; Jiang L
    Langmuir; 2009 Dec; 25(24):14129-34. PubMed ID: 19583224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of raindrops on
    Konrad W; Roth-Nebelsick A; Kessel B; Miranda T; Ebner M; Schott R; Nebelsick JH
    J R Soc Interface; 2021 Dec; 18(185):20210676. PubMed ID: 34905964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
    Bhushan B; Jung YC; Koch K
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces.
    Mayser MJ; Bohn HF; Reker M; Barthlott W
    Beilstein J Nanotechnol; 2014; 5():812-821. PubMed ID: 24991518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.