These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31964922)

  • 1. Differential Abundance Analysis with Bayes Shrinkage Estimation of Variance (DASEV) for Zero-Inflated Proteomic and Metabolomic Data.
    Huang Z; Lane AN; Fan TW; Higashi RM; Weiss HL; Yin X; Wang C
    Sci Rep; 2020 Jan; 10(1):876. PubMed ID: 31964922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-model statistical approach for proteomic spectral count quantitation.
    Branson OE; Freitas MA
    J Proteomics; 2016 Jul; 144():23-32. PubMed ID: 27260494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review on Differential Abundance Analysis Methods for Mass Spectrometry-Based Metabolomic Data.
    Huang Z; Wang C
    Metabolites; 2022 Mar; 12(4):. PubMed ID: 35448492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SDA: a semi-parametric differential abundance analysis method for metabolomics and proteomics data.
    Li Y; Fan TWM; Lane AN; Kang WY; Arnold SM; Stromberg AJ; Wang C; Chen L
    BMC Bioinformatics; 2019 Oct; 20(1):501. PubMed ID: 31623550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probabilistic Generation of Mass Spectrometry Molecular Abundance Variance for Case and Control Replicates.
    Prince JT; Smith R
    J Proteome Res; 2017 Jul; 16(7):2429-2434. PubMed ID: 28557431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topic model-based mass spectrometric data analysis in cancer biomarker discovery studies.
    Wang M; Tsai TH; Di Poto C; Ferrarini A; Yu G; Ressom HW
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):545. PubMed ID: 27535232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical Bayes analysis of quantitative proteomics experiments.
    Margolin AA; Ong SE; Schenone M; Gould R; Schreiber SL; Carr SA; Golub TR
    PLoS One; 2009 Oct; 4(10):e7454. PubMed ID: 19829701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bayesian integration model of high-throughput proteomics and metabolomics data for improved early detection of microbial infections.
    Webb-Robertson BJ; McCue LA; Beagley N; McDermott JE; Wunschel DS; Varnum SM; Hu JZ; Isern NG; Buchko GW; Mcateer K; Pounds JG; Skerrett SJ; Liggitt D; Frevert CW
    Pac Symp Biocomput; 2009; ():451-63. PubMed ID: 19209722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of Absence: Bayesian Way to Reveal True Zeros Among Occupational Exposures.
    Lavoue J; Burstyn I
    Ann Work Expo Health; 2021 Jan; 65(1):84-95. PubMed ID: 32914163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling count data with excessive zeros: the need for class prediction in zero-inflated models and the issue of data generation in choosing between zero-inflated and generic mixture models for dental caries data.
    Gilthorpe MS; Frydenberg M; Cheng Y; Baelum V
    Stat Med; 2009 Dec; 28(28):3539-53. PubMed ID: 19902494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: zero-inflated Poisson regression models to predict abundance of undetected proteins.
    Nie L; Wu G; Brockman FJ; Zhang W
    Bioinformatics; 2006 Jul; 22(13):1641-7. PubMed ID: 16675466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolomics variable selection and classification in the presence of observations below the detection limit using an extension of ERp.
    van Reenen M; Westerhuis JA; Reinecke CJ; Venter JH
    BMC Bioinformatics; 2017 Feb; 18(1):83. PubMed ID: 28153039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Important Issues in Planning a Proteomics Experiment: Statistical Considerations of Quantitative Proteomic Data.
    Schork K; Podwojski K; Turewicz M; Stephan C; Eisenacher M
    Methods Mol Biol; 2021; 2228():1-20. PubMed ID: 33950479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bivariate zero-inflated regression for count data: a Bayesian approach with application to plant counts.
    Majumdar A; Gries C
    Int J Biostat; 2010; 6(1):Article 27. PubMed ID: 21969981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New methods to identify high peak density artifacts in Fourier transform mass spectra and to mitigate their effects on high-throughput metabolomic data analysis.
    Mitchell JM; Flight RM; Wang QJ; Higashi RM; Fan TW; Lane AN; Moseley HNB
    Metabolomics; 2018 Sep; 14(10):125. PubMed ID: 30830442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical design and analysis of label-free LC-MS proteomic experiments: a case study of coronary artery disease.
    Clough T; Braun S; Fokin V; Ott I; Ragg S; Schadow G; Vitek O
    Methods Mol Biol; 2011; 728():293-319. PubMed ID: 21468957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling abundance using N-mixture models: the importance of considering ecological mechanisms.
    Joseph LN; Elkin C; Martin TG; Possinghami HP
    Ecol Appl; 2009 Apr; 19(3):631-42. PubMed ID: 19425427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical Bayes screening of many p-values with applications to microarray studies.
    Datta S; Datta S
    Bioinformatics; 2005 May; 21(9):1987-94. PubMed ID: 15691856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of proteomic and metabolomic profiles of different species of Paris.
    Liu F; Meng Y; He K; Song F; Cheng J; Wang H; Huang Z; Luo Z; Yan X
    J Proteomics; 2019 May; 200():11-27. PubMed ID: 30890455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian model selection for mining mass spectrometry data.
    Saksena A; Lucarelli D; Wang IJ
    Neural Netw; 2005; 18(5-6):843-9. PubMed ID: 16139743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.