These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31965205)

  • 41. Implications of adipose-derived stromal cells in a 3D culture system for osteogenic differentiation: an in vitro and in vivo investigation.
    Shen FH; Werner BC; Liang H; Shang H; Yang N; Li X; Shimer AL; Balian G; Katz AJ
    Spine J; 2013 Jan; 13(1):32-43. PubMed ID: 23384881
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents.
    Sun T; Jackson S; Haycock JW; MacNeil S
    J Biotechnol; 2006 Apr; 122(3):372-81. PubMed ID: 16446003
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of a 3D bone marrow adipose tissue model.
    Fairfield H; Falank C; Farrell M; Vary C; Boucher JM; Driscoll H; Liaw L; Rosen CJ; Reagan MR
    Bone; 2019 Jan; 118():77-88. PubMed ID: 29366838
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A mouse organotypic tissue culture model for autosomal recessive congenital ichthyosis.
    Rosenberger S; Dick A; Latzko S; Hausser I; Stark HJ; Rauh M; Schneider H; Krieg P
    Br J Dermatol; 2014 Dec; 171(6):1347-57. PubMed ID: 25078898
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Xenobiotic metabolism capacities of human skin in comparison with a 3D-epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: phase II enzymes.
    Götz C; Pfeiffer R; Tigges J; Ruwiedel K; Hübenthal U; Merk HF; Krutmann J; Edwards RJ; Abel J; Pease C; Goebel C; Hewitt N; Fritsche E
    Exp Dermatol; 2012 May; 21(5):364-9. PubMed ID: 22509834
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced in vitro osteogenic differentiation of human fetal MSCs attached to 3D microcarriers versus harvested from 2D monolayers.
    Shekaran A; Sim E; Tan KY; Chan JK; Choolani M; Reuveny S; Oh S
    BMC Biotechnol; 2015 Oct; 15():102. PubMed ID: 26520400
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic 3D cell culture: from tools to tissue models.
    van Duinen V; Trietsch SJ; Joore J; Vulto P; Hankemeier T
    Curr Opin Biotechnol; 2015 Dec; 35():118-26. PubMed ID: 26094109
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improving 2D and 3D Skin In Vitro Models Using Macromolecular Crowding.
    Benny P; Badowski C; Lane EB; Raghunath M
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27585070
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-dimensional in vitro tissue culture models of breast cancer-- a review.
    Kim JB; Stein R; O'Hare MJ
    Breast Cancer Res Treat; 2004 Jun; 85(3):281-91. PubMed ID: 15111767
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Potential and limitations of microscopy and Raman spectroscopy for live-cell analysis of 3D cell cultures.
    Charwat V; Schütze K; Holnthoner W; Lavrentieva A; Gangnus R; Hofbauer P; Hoffmann C; Angres B; Kasper C
    J Biotechnol; 2015 Jul; 205():70-81. PubMed ID: 25687101
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cancer cells growing on perfused 3D collagen model produced higher reactive oxygen species level and were more resistant to cisplatin compared to the 2D model.
    Liu Q; Zhang Z; Liu Y; Cui Z; Zhang T; Li Z; Ma W
    J Appl Biomater Funct Mater; 2018 Jul; 16(3):144-150. PubMed ID: 29609492
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Noninvasive test methods for epidermal barrier function.
    Sotoodian B; Maibach HI
    Clin Dermatol; 2012; 30(3):301-10. PubMed ID: 22507045
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro skin irritation: facts and future. State of the art review of mechanisms and models.
    Welss T; Basketter DA; Schröder KR
    Toxicol In Vitro; 2004 Jun; 18(3):231-43. PubMed ID: 15046769
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Catch-up validation study of an in vitro skin irritation test method based on an open source reconstructed epidermis (phase I).
    Mewes KR; Fischer A; Zöller NN; Laubach V; Bernd A; Jacobs A; van Rompay A; Liebsch M; Pirow R; Petersohn D
    Toxicol In Vitro; 2016 Oct; 36():238-253. PubMed ID: 27432483
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Novel 3D Skin Explant Model to Study Anaerobic Bacterial Infection.
    Maboni G; Davenport R; Sessford K; Baiker K; Jensen TK; Blanchard AM; Wattegedera S; Entrican G; Tötemeyer S
    Front Cell Infect Microbiol; 2017; 7():404. PubMed ID: 28959685
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three dimensional spheroid cell culture for nanoparticle safety testing.
    Sambale F; Lavrentieva A; Stahl F; Blume C; Stiesch M; Kasper C; Bahnemann D; Scheper T
    J Biotechnol; 2015 Jul; 205():120-9. PubMed ID: 25595712
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An approach for development of alternative test methods based on mechanisms of skin irritation.
    Osborne R; Perkins MA
    Food Chem Toxicol; 1994 Feb; 32(2):133-42. PubMed ID: 8132172
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D skin models in domestic animals.
    Souci L; Denesvre C
    Vet Res; 2021 Feb; 52(1):21. PubMed ID: 33588939
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A simple reconstructed human epidermis: preparation of the culture model and utilization in in vitro studies.
    Poumay Y; Dupont F; Marcoux S; Leclercq-Smekens M; Hérin M; Coquette A
    Arch Dermatol Res; 2004 Oct; 296(5):203-11. PubMed ID: 15349789
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Large-scale pharmacological profiling of 3D tumor models of cancer cells.
    Mathews Griner LA; Zhang X; Guha R; McKnight C; Goldlust IS; Lal-Nag M; Wilson K; Michael S; Titus S; Shinn P; Thomas CJ; Ferrer M
    Cell Death Dis; 2016 Dec; 7(12):e2492. PubMed ID: 27906188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.