These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Filtration characteristics of small-sized rotating filter for plasma separation. Ogasawara K; Kushiya F; Takeda T; Matsumoto T; Yoshida S; Endo M; Horio T; Sakai K Prog Clin Biol Res; 1990; 337():379-81. PubMed ID: 2352999 [No Abstract] [Full Text] [Related]
5. Flow in a rotating membrane plasma separator. Lueptow RM; Hajiloo A ASAIO J; 1995; 41(2):182-8. PubMed ID: 7640424 [TBL] [Abstract][Full Text] [Related]
6. Separation of plasma from whole blood by membrane filtration in oscillatory flows. Stairmand JW; Bellhouse BJ; Jamal Z; Lewis RW; Urban JP; Entwistle CC Life Support Syst; 1986; 4(3):193-204. PubMed ID: 3784601 [TBL] [Abstract][Full Text] [Related]
7. [Flow field test on the tangential section of polypropylene tubular membrane module annular gap in rotating linear tangential flow]. Wang C; Chen W; Li J; Jiang G Huan Jing Ke Xue; 2002 Jul; 23(4):57-61. PubMed ID: 12371104 [TBL] [Abstract][Full Text] [Related]
8. A high efficiency membrane separator for donor plasmapheresis. Bellhouse BJ; Lewis RW ASAIO Trans; 1988; 34(3):747-54. PubMed ID: 3058185 [TBL] [Abstract][Full Text] [Related]
9. Dynamic filtration of blood: a new concept for enhancing plasma filtration. Ding L; Laurent JM; Jaffrin MY Int J Artif Organs; 1991 Jun; 14(6):365-70. PubMed ID: 1885245 [TBL] [Abstract][Full Text] [Related]
10. Modelling of plasma-separation through microporous membranes. Gupta BB; Jaffrin MY; Ding LH Int J Artif Organs; 1989 Jan; 12(1):51-8. PubMed ID: 2925262 [TBL] [Abstract][Full Text] [Related]
12. Numerical simulations of the evolution of Taylor cells from a growing boundary layer on the inner cylinder of a high radius ratio Taylor-Couette system. Batten WM; Bressloff NW; Turnock SR Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066302. PubMed ID: 12513397 [TBL] [Abstract][Full Text] [Related]
13. Influence of fermentation conditions and microfiltration processes on membrane fouling during recovery of glucuronane polysaccharides from fermentation broths. Harscoat C; Jaffrin MY; Bouzerar R; Courtois J Biotechnol Bioeng; 1999 Dec; 65(5):500-11. PubMed ID: 10516575 [TBL] [Abstract][Full Text] [Related]
15. [RoTrac capillary pore membranes for laboratory filtration. II. Bacteria-free filtration]. Gemende B; Heinrich B; Selassie GG; Knaack D; Witzleb W Zentralbl Hyg Umweltmed; 1992 Oct; 193(3):253-61. PubMed ID: 1457036 [TBL] [Abstract][Full Text] [Related]
16. Pore size and temperature effects in membrane separation of albumin from immunoglobulins. Zborowski M; Malchesky PS ASAIO Trans; 1990; 36(3):M730-3. PubMed ID: 2252796 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the efficiency of a new hollow fiber plasmapheresis filter. Orlandini GC; Margaria R Int J Artif Organs; 1983 Jul; 6 Suppl 1():103-6. PubMed ID: 6642727 [TBL] [Abstract][Full Text] [Related]
18. High efficiency plasmapheresis using rotating membrane device. Beaudoin G; Jaffrin MY Life Support Syst; 1987; 5(3):273-8. PubMed ID: 3695586 [TBL] [Abstract][Full Text] [Related]
19. [RoTrac capillary pore membranes for laboratory filtration. I. Degermination filtration]. Gemende B; Heinrich B; Selassie GG; Knaack D; Witzleb W Zentralbl Hyg Umweltmed; 1992 Aug; 193(2):188-97. PubMed ID: 1388619 [TBL] [Abstract][Full Text] [Related]
20. Maximal flow rates and sieving coefficients in different plasmafilters: effects of increased membrane surfaces and effective length under standardized in vitro conditions. Unger JK; Haltern C; Dohmen B; Rossaint R J Clin Apher; 2002; 17(4):190-8. PubMed ID: 12494412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]