BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3196532)

  • 1. Cellular control of membrane permeability. Implications for a bioartificial renal tubule.
    Ip TK; Aebischer P; Galletti PM
    ASAIO Trans; 1988; 34(3):351-5. PubMed ID: 3196532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport functions in a bioartificial kidney under uremic conditions.
    Uludag H; Ip TK; Aebischer P
    Int J Artif Organs; 1990 Feb; 13(2):93-7. PubMed ID: 2347662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of proliferation and functional differentiation of LLC-PK1 cells on porous polymer membranes for the development of a bioartificial renal tubule device.
    Sato Y; Terashima M; Kagiwada N; Tun T; Inagaki M; Kakuta T; Saito A
    Tissue Eng; 2005; 11(9-10):1506-15. PubMed ID: 16259605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics.
    Humes HD; MacKay SM; Funke AJ; Buffington DA
    Kidney Int; 1999 Jun; 55(6):2502-14. PubMed ID: 10354300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of long-term transport ability of a bioartificial renal tubule device using LLC-PK1 cells.
    Ozgen N; Terashima M; Aung T; Sato Y; Isoe C; Kakuta T; Saito A
    Nephrol Dial Transplant; 2004 Sep; 19(9):2198-207. PubMed ID: 15266032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research into the development of a wearable bioartificial kidney with a continuous hemofilter and a bioartificial tubule device using tubular epithelial cells.
    Saito A
    Artif Organs; 2004 Jan; 28(1):58-63. PubMed ID: 14720290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcellular water transport and stability of expression in aquaporin 1-transfected LLC-PK1 cells in the development of a portable bioartificial renal tubule device.
    Fujita Y; Terashima M; Kakuta T; Itoh J; Tokimasa T; Brown D; Saito A
    Tissue Eng; 2004; 10(5-6):711-22. PubMed ID: 15265288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell type-specific acquired protection from crystal adherence by renal tubule cells in culture.
    Verkoelen CF; van der Boom BG; Kok DJ; Houtsmuller AB; Visser P; Schröder FH; Romijn JC
    Kidney Int; 1999 Apr; 55(4):1426-33. PubMed ID: 10201007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urinary loss of glucose, phosphate, and protein by diffusion into proximal straight tubules injured by D-serine and maleic acid.
    Carone FA; Nakamura S; Goldman B
    Lab Invest; 1985 Jun; 52(6):605-10. PubMed ID: 3925238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ochratoxin A secretion in primary cultures of rabbit renal proximal tubule cells.
    Groves CE; Nowak G; Morales M
    J Am Soc Nephrol; 1999 Jan; 10(1):13-20. PubMed ID: 9890304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cardiac glycosides on sodium pump expression and function in LLC-PK1 and MDCK cells.
    Liu J; Periyasamy SM; Gunning W; Fedorova OV; Bagrov AY; Malhotra D; Xie Z; Shapiro JI
    Kidney Int; 2002 Dec; 62(6):2118-25. PubMed ID: 12427136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarity of stimulation and secretion of transforming growth factor-beta 1 by cultured proximal tubular cells.
    Phillips AO; Steadman R; Morrisey K; Williams JD
    Am J Pathol; 1997 Mar; 150(3):1101-11. PubMed ID: 9060845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LLC-PK1 cells as a model system to study proximal tubule transport of water and other compounds relevant for renal stone disease.
    Verkoelen CF; Kok DJ; van der Boom BG; de Jonge HR; Schröder FH; Romijn JC
    Urol Res; 1999 Apr; 27(2):109-15. PubMed ID: 10424392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium cotransport processes in renal epithelial cell lines.
    Rabito CA
    Miner Electrolyte Metab; 1986; 12(1):32-41. PubMed ID: 2421146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of basolateral membranes that transport p-aminohippurate from primary cultures of rabbit kidney proximal tubule cells.
    Yang IS; Goldinger JM; Hong SK; Taub M
    J Cell Physiol; 1988 Jun; 135(3):481-7. PubMed ID: 3397387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic anion secretion by winter flounder renal proximal tubule primary monolayer cultures.
    Dawson MA; Renfro JL
    J Pharmacol Exp Ther; 1990 Jul; 254(1):39-44. PubMed ID: 2366188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal tubular transport of organic acids. Studies with oxalate and para-aminohippurate in the rat.
    Weinman EJ; Frankfurt SJ; Ince A; Sansom S
    J Clin Invest; 1978 Mar; 61(3):801-6. PubMed ID: 641156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of organic anion in the OK kidney epithelial cell line.
    Hori R; Okamura M; Takayama A; Hirozane K; Takano M
    Am J Physiol; 1993 Jun; 264(6 Pt 2):F975-80. PubMed ID: 8322901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of water and electrolyte transport of tubular epithelial cells under osmotic and hydraulic pressure for development of bioartificial tubules.
    Terashima M; Fujita Y; Sugano K; Asano M; Kagiwada N; Sheng Y; Nakamura S; Hasegawa A; Kakuta T; Saito A
    Artif Organs; 2001 Mar; 25(3):209-12. PubMed ID: 11284888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorotrifluoroethylcysteine interaction with rabbit proximal tubule cell basolateral membrane organic anion transport and apical membrane amino acid transport.
    Groves CE; Morales MN
    J Pharmacol Exp Ther; 1999 Nov; 291(2):555-61. PubMed ID: 10525071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.