These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 31965334)
1. Arsenic accumulation by a rhizosphere bacterial strain Ochrobactrum tritici reduces rice plant arsenic levels. Moens M; Branco R; Morais PV World J Microbiol Biotechnol; 2020 Jan; 36(2):23. PubMed ID: 31965334 [TBL] [Abstract][Full Text] [Related]
2. Two plant-hosted whole-cell bacterial biosensors for detection of bioavailable Cr(VI). Francisco R; Branco R; Schwab S; Baldani I; Morais PV World J Microbiol Biotechnol; 2019 Aug; 35(8):129. PubMed ID: 31376017 [TBL] [Abstract][Full Text] [Related]
3. Impact of plant-associated bacteria biosensors on plant growth in the presence of hexavalent chromium. Francisco R; Branco R; Schwab S; Baldani JI; Morais PV World J Microbiol Biotechnol; 2017 Dec; 34(1):12. PubMed ID: 29256050 [TBL] [Abstract][Full Text] [Related]
4. Growth-inhibition patterns and transfer-factor profiles in arsenic-stressed rice (Oryza sativa L.). Jung HI; Lee J; Chae MJ; Kong MS; Lee CH; Kang SS; Kim YH Environ Monit Assess; 2017 Nov; 189(12):638. PubMed ID: 29147882 [TBL] [Abstract][Full Text] [Related]
5. The effect of plant growth-promoting rhizobacteria (PGPR) on arsenic accumulation and the growth of rice plants (Oryza sativa L.). Aw X; Z L; Wc L; Zh Y Chemosphere; 2020 Mar; 242():125136. PubMed ID: 31654806 [TBL] [Abstract][Full Text] [Related]
6. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica. Mesa V; Navazas A; González-Gil R; González A; Weyens N; Lauga B; Gallego JLR; Sánchez J; Peláez AI Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188207 [TBL] [Abstract][Full Text] [Related]
7. Assessing the bioremediation potential of arsenic tolerant bacterial strains in rice rhizosphere interface. Singh N; Srivastava S; Rathaur S; Singh N J Environ Sci (China); 2016 Oct; 48():112-119. PubMed ID: 27745656 [TBL] [Abstract][Full Text] [Related]
8. A natural rice rhizospheric bacterium abates arsenic accumulation in rice (Oryza sativa L.). Lakshmanan V; Shantharaj D; Li G; Seyfferth AL; Janine Sherrier D; Bais HP Planta; 2015 Oct; 242(4):1037-50. PubMed ID: 26059607 [TBL] [Abstract][Full Text] [Related]
9. Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Zia Z; Bakhat HF; Saqib ZA; Shah GM; Fahad S; Ashraf MR; Hammad HM; Naseem W; Shahid M Ecotoxicol Environ Saf; 2017 Oct; 144():11-18. PubMed ID: 28599126 [TBL] [Abstract][Full Text] [Related]
10. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal. Dahal BM; Fuerhacker M; Mentler A; Karki KB; Shrestha RR; Blum WE Environ Pollut; 2008 Sep; 155(1):157-63. PubMed ID: 18068879 [TBL] [Abstract][Full Text] [Related]
11. Arsenic biotransformation genes and As transportation in soil-rice system affected by iron-oxidizing strain (Ochrobactrum sp.). Xue S; He X; Jiang X; Pan W; Li W; Xia L; Wu C Environ Pollut; 2022 Dec; 314():120311. PubMed ID: 36181941 [TBL] [Abstract][Full Text] [Related]
12. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. Singh N; Marwa N; Mishra SK; Mishra J; Verma PC; Rathaur S; Singh N Ecotoxicol Environ Saf; 2016 Mar; 125():25-34. PubMed ID: 26650422 [TBL] [Abstract][Full Text] [Related]
13. Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Upadhyay AK; Singh NK; Singh R; Rai UN Ecotoxicol Environ Saf; 2016 Feb; 124():68-73. PubMed ID: 26473328 [TBL] [Abstract][Full Text] [Related]
14. An indoleacetic acid-producing Ochrobactrum sp. MGJ11 counteracts cadmium effect on soybean by promoting plant growth. Yu X; Li Y; Cui Y; Liu R; Li Y; Chen Q; Gu Y; Zhao K; Xiang Q; Xu K; Zhang X J Appl Microbiol; 2017 Apr; 122(4):987-996. PubMed ID: 27995689 [TBL] [Abstract][Full Text] [Related]
15. Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil. Liu S; Lu Y; Yang C; Liu C; Ma L; Dang Z Environ Sci Pollut Res Int; 2017 Oct; 24(30):23815-23824. PubMed ID: 28866780 [TBL] [Abstract][Full Text] [Related]
16. Mitigating arsenic contamination in rice plants with an aquatic fern, Marsilea minuta. Hassi U; Hossain MT; Huq SMI Environ Monit Assess; 2017 Oct; 189(11):550. PubMed ID: 29018967 [TBL] [Abstract][Full Text] [Related]
17. Identification of an aox system that requires cytochrome c in the highly arsenic-resistant bacterium Ochrobactrum tritici SCII24. Branco R; Francisco R; Chung AP; Morais PV Appl Environ Microbiol; 2009 Aug; 75(15):5141-7. PubMed ID: 19525272 [TBL] [Abstract][Full Text] [Related]
18. Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: A critical review. Saifullah ; Dahlawi S; Naeem A; Iqbal M; Farooq MA; Bibi S; Rengel Z Chemosphere; 2018 Mar; 194():171-188. PubMed ID: 29202269 [TBL] [Abstract][Full Text] [Related]
19. Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation. Kofroňová M; Mašková P; Lipavská H Planta; 2018 Jul; 248(1):19-35. PubMed ID: 29736625 [TBL] [Abstract][Full Text] [Related]
20. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil. Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]