These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 31965334)
21. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. Pandey S; Ghosh PK; Ghosh S; De TK; Maiti TK J Microbiol; 2013 Feb; 51(1):11-7. PubMed ID: 23456706 [TBL] [Abstract][Full Text] [Related]
22. Repeated inoculation of antimony resistant bacterium reduces antimony accumulation in rice plants. Long J; Zhou D; Wang J; Huang B; Luo Y; Zhang G; Liu Z; Lei M Chemosphere; 2023 Jun; 327():138335. PubMed ID: 36948256 [TBL] [Abstract][Full Text] [Related]
23. Enhanced arsenic tolerance of transgenic eastern cottonwood plants expressing gamma-glutamylcysteine synthetase. LeBlanc MS; Lima A; Montello P; Kim T; Meagher RB; Merkle S Int J Phytoremediation; 2011 Aug; 13(7):657-73. PubMed ID: 21972493 [TBL] [Abstract][Full Text] [Related]
24. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Mitra S; Pramanik K; Ghosh PK; Soren T; Sarkar A; Dey RS; Pandey S; Maiti TK Microbiol Res; 2018 May; 210():12-25. PubMed ID: 29625654 [TBL] [Abstract][Full Text] [Related]
25. Immobilization of Ochrobactrum tritici As5 on PTFE thin films for arsenite biofiltration. Branco R; Sousa T; Piedade AP; Morais PV Chemosphere; 2016 Mar; 146():330-7. PubMed ID: 26735734 [TBL] [Abstract][Full Text] [Related]
26. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Chen YX; Wang YP; Lin Q; Luo YM Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516 [TBL] [Abstract][Full Text] [Related]
27. Fungal mediated biotransformation reduces toxicity of arsenic to soil dwelling microorganism and plant. Mohd S; Kushwaha AS; Shukla J; Mandrah K; Shankar J; Arjaria N; Saxena PN; Khare P; Narayan R; Dixit S; Siddiqui MH; Tuteja N; Das M; Roy SK; Kumar M Ecotoxicol Environ Saf; 2019 Jul; 176():108-118. PubMed ID: 30925326 [TBL] [Abstract][Full Text] [Related]
28. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Yang YP; Zhang HM; Yuan HY; Duan GL; Jin DC; Zhao FJ; Zhu YG Environ Pollut; 2018 May; 236():598-608. PubMed ID: 29433100 [TBL] [Abstract][Full Text] [Related]
29. Unraveling the role of plant growth-promoting rhizobacteria in the alleviation of arsenic phytotoxicity: A review. Mondal S; Pramanik K; Ghosh SK; Pal P; Mondal T; Soren T; Maiti TK Microbiol Res; 2021 Sep; 250():126809. PubMed ID: 34166969 [TBL] [Abstract][Full Text] [Related]
30. The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO Wang X; Li F; Yuan C; Li B; Liu T; Liu C; Du Y; Liu C Sci Total Environ; 2019 Feb; 650(Pt 1):633-641. PubMed ID: 30212692 [TBL] [Abstract][Full Text] [Related]
31. Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. Jia Y; Huang H; Chen Z; Zhu YG Environ Sci Technol; 2014 Jan; 48(2):1001-7. PubMed ID: 24383760 [TBL] [Abstract][Full Text] [Related]
32. Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains. Wang M; Tang Z; Chen XP; Wang X; Zhou WX; Tang Z; Zhang J; Zhao FJ Environ Pollut; 2019 Apr; 247():736-744. PubMed ID: 30721864 [TBL] [Abstract][Full Text] [Related]
33. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Hu ZY; Zhu YG; Li M; Zhang LG; Cao ZH; Smith FA Environ Pollut; 2007 May; 147(2):387-93. PubMed ID: 16996667 [TBL] [Abstract][Full Text] [Related]
34. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria. Li Y; Pang HD; He LY; Wang Q; Sheng XF Ecotoxicol Environ Saf; 2017 Apr; 138():56-63. PubMed ID: 28011421 [TBL] [Abstract][Full Text] [Related]
35. Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: Implications for mitigation of arsenic contamination in paddies. Das S; Jean JS; Chou ML; Rathod J; Liu CC J Hazard Mater; 2016 Jan; 302():10-18. PubMed ID: 26448489 [TBL] [Abstract][Full Text] [Related]
36. Hyper Accumulation of Arsenic in Mutants of Ochrobactrum tritici Silenced for Arsenite Efflux Pumps. Sousa T; Branco R; Piedade AP; Morais PV PLoS One; 2015; 10(7):e0131317. PubMed ID: 26132104 [TBL] [Abstract][Full Text] [Related]
37. Nanoscale Sulfur Improves Plant Growth and Reduces Arsenic Toxicity and Accumulation in Rice ( G Meselhy A; Sharma S; Guo Z; Singh G; Yuan H; Tripathi RD; Xing B; Musante C; White JC; Dhankher OP Environ Sci Technol; 2021 Oct; 55(20):13490-13503. PubMed ID: 34570468 [TBL] [Abstract][Full Text] [Related]
38. Arsenic uptake, accumulation and toxicity in rice plants: Possible remedies for its detoxification: A review. Bakhat HF; Zia Z; Fahad S; Abbas S; Hammad HM; Shahzad AN; Abbas F; Alharby H; Shahid M Environ Sci Pollut Res Int; 2017 Apr; 24(10):9142-9158. PubMed ID: 28160172 [TBL] [Abstract][Full Text] [Related]
39. Cultivar-specific response of bacterial community to cadmium contamination in the rhizosphere of rice (Oryza sativa L.). Hou D; Wang R; Gao X; Wang K; Lin Z; Ge J; Liu T; Wei S; Chen W; Xie R; Yang X; Lu L; Tian S Environ Pollut; 2018 Oct; 241():63-73. PubMed ID: 29800928 [TBL] [Abstract][Full Text] [Related]
40. The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere. Mei XQ; Wong MH; Yang Y; Dong HY; Qiu RL; Ye ZH Environ Pollut; 2012 Jun; 165():109-17. PubMed ID: 22445918 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]