These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 31965467)
1. Adaptation of light-harvesting and energy-transfer processes of a diatom Phaeodactylum tricornutum to different light qualities. Oka K; Ueno Y; Yokono M; Shen JR; Nagao R; Akimoto S Photosynth Res; 2020 Dec; 146(1-3):227-234. PubMed ID: 31965467 [TBL] [Abstract][Full Text] [Related]
2. Adaptation of light-harvesting and energy-transfer processes of a diatom Chaetoceros gracilis to different light qualities. Akimoto S; Ueno Y; Yokono M; Shen JR; Nagao R Photosynth Res; 2020 Dec; 146(1-3):87-93. PubMed ID: 31970552 [TBL] [Abstract][Full Text] [Related]
3. Acidic pH-Induced Modification of Energy Transfer in Diatom Fucoxanthin Chlorophyll Nagao R; Yokono M; Ueno Y; Shen JR; Akimoto S J Phys Chem B; 2020 Jun; 124(24):4919-4923. PubMed ID: 32453592 [TBL] [Abstract][Full Text] [Related]
4. The monomeric photosystem I-complex of the diatom Phaeodactylum tricornutum binds specific fucoxanthin chlorophyll proteins (FCPs) as light-harvesting complexes. Veith T; Büchel C Biochim Biophys Acta; 2007 Dec; 1767(12):1428-35. PubMed ID: 18028870 [TBL] [Abstract][Full Text] [Related]
5. Changes in excitation relaxation of diatoms in response to fluctuating light, probed by fluorescence spectroscopies. Tanabe M; Ueno Y; Yokono M; Shen JR; Nagao R; Akimoto S Photosynth Res; 2020 Dec; 146(1-3):143-150. PubMed ID: 32067138 [TBL] [Abstract][Full Text] [Related]
6. Pigment organization effects on energy transfer and Chl a emission imaged in the diatoms C. meneghiniana and P. tricornutum in vivo: a confocal laser scanning fluorescence (CLSF) microscopy and spectroscopy study. Premvardhan L; Réfrégiers M; Büchel C J Phys Chem B; 2013 Sep; 117(38):11272-81. PubMed ID: 23844975 [TBL] [Abstract][Full Text] [Related]
7. The diadinoxanthin diatoxanthin cycle induces structural rearrangements of the isolated FCP antenna complexes of the pennate diatom Phaeodactylum tricornutum. Schaller-Laudel S; Volke D; Redlich M; Kansy M; Hoffmann R; Wilhelm C; Goss R Plant Physiol Biochem; 2015 Nov; 96():364-76. PubMed ID: 26368016 [TBL] [Abstract][Full Text] [Related]
8. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum. Giovagnetti V; Ruban AV Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819 [TBL] [Abstract][Full Text] [Related]
9. Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Herbstová M; Bína D; Koník P; Gardian Z; Vácha F; Litvín R Biochim Biophys Acta; 2015; 1847(6-7):534-43. PubMed ID: 25748970 [TBL] [Abstract][Full Text] [Related]
10. Electric Field Susceptibility of Chlorophyll c Leads to Unexpected Excitation Dynamics in the Major Light-Harvesting Complex of Diatoms. Maity S; Daskalakis V; Jansen TLC; Kleinekathöfer U J Phys Chem Lett; 2024 Mar; 15(9):2499-2510. PubMed ID: 38410961 [TBL] [Abstract][Full Text] [Related]
11. Structural features of the diatom photosystem II-light-harvesting antenna complex. Wang W; Zhao S; Pi X; Kuang T; Sui SF; Shen JR FEBS J; 2020 Jun; 287(11):2191-2200. PubMed ID: 31854056 [TBL] [Abstract][Full Text] [Related]
12. Biochemical characterization of photosystem I complexes having different subunit compositions of fucoxanthin chlorophyll a/c-binding proteins in the diatom Chaetoceros gracilis. Nagao R; Ueno Y; Akita F; Suzuki T; Dohmae N; Akimoto S; Shen JR Photosynth Res; 2019 May; 140(2):141-149. PubMed ID: 30187302 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins. Joshi-Deo J; Schmidt M; Gruber A; Weisheit W; Mittag M; Kroth PG; Büchel C J Exp Bot; 2010 Jun; 61(11):3079-87. PubMed ID: 20478968 [TBL] [Abstract][Full Text] [Related]
14. Effects of excess light energy on excitation-energy dynamics in a pennate diatom Phaeodactylum tricornutum. Nagao R; Ueno Y; Yokono M; Shen JR; Akimoto S Photosynth Res; 2019 Sep; 141(3):355-365. PubMed ID: 30993504 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of excitation-energy quenching in fucoxanthin chlorophyll a/c-binding proteins isolated from a diatom Phaeodactylum tricornutum upon excess-light illumination. Nagao R; Yokono M; Ueno Y; Suzuki T; Kumazawa M; Kato KH; Tsuboshita N; Dohmae N; Ifuku K; Shen JR; Akimoto S Biochim Biophys Acta Bioenerg; 2021 Feb; 1862(2):148350. PubMed ID: 33285102 [TBL] [Abstract][Full Text] [Related]
16. Utilization of light by fucoxanthin-chlorophyll-binding protein in a marine centric diatom, Chaetoceros gracilis. Ishihara T; Ifuku K; Yamashita E; Fukunaga Y; Nishino Y; Miyazawa A; Kashino Y; Inoue-Kashino N Photosynth Res; 2015 Dec; 126(2-3):437-47. PubMed ID: 26149177 [TBL] [Abstract][Full Text] [Related]
17. Supramolecular organization of fucoxanthin-chlorophyll proteins in centric and pennate diatoms. Gardian Z; Litvín R; Bína D; Vácha F Photosynth Res; 2014 Jul; 121(1):79-86. PubMed ID: 24715699 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for blue-green light harvesting and energy dissipation in diatoms. Wang W; Yu LJ; Xu C; Tomizaki T; Zhao S; Umena Y; Chen X; Qin X; Xin Y; Suga M; Han G; Kuang T; Shen JR Science; 2019 Feb; 363(6427):. PubMed ID: 30733387 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence quenching in aggregates of fucoxanthin-chlorophyll protein complexes: Interplay of fluorescing and dark states. Gelzinis A; Chmeliov J; Tutkus M; Vitulskienė E; Franckevičius M; Büchel C; Robert B; Valkunas L Biochim Biophys Acta Bioenerg; 2024 Apr; 1865(2):149030. PubMed ID: 38163538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]