These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 31965672)
21. Control of macaw palm seed germination by the gibberellin/abscisic acid balance. Bicalho EM; Pintó-Marijuan M; Morales M; Müller M; Munné-Bosch S; Garcia QS Plant Biol (Stuttg); 2015 Sep; 17(5):990-6. PubMed ID: 25818098 [TBL] [Abstract][Full Text] [Related]
22. Water content: a key factor of the induction of secondary dormancy in barley grains as related to ABA metabolism. Hoang HH; Sotta B; Gendreau E; Bailly C; Leymarie J; Corbineau F Physiol Plant; 2013 Jun; 148(2):284-96. PubMed ID: 23061651 [TBL] [Abstract][Full Text] [Related]
23. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Chiwocha SD; Cutler AJ; Abrams SR; Ambrose SJ; Yang J; Ross AR; Kermode AR Plant J; 2005 Apr; 42(1):35-48. PubMed ID: 15773852 [TBL] [Abstract][Full Text] [Related]
24. Non-deep physiological dormancy and germination characteristics of Qin Y; Geng B; Yang LE; Peng D PeerJ; 2023; 11():e15234. PubMed ID: 37138822 [TBL] [Abstract][Full Text] [Related]
25. Common and distinct responses in phytohormone and vitamin E changes during seed burial and dormancy in Xyris bialata and X. peregrina. Garcia QS; Giorni VT; Müller M; Munné-Bosch S Plant Biol (Stuttg); 2012 Mar; 14(2):347-53. PubMed ID: 21972817 [TBL] [Abstract][Full Text] [Related]
26. The roles of auxin in seed dormancy and germination. Shuai HW; Meng YJ; Luo XF; Chen F; Qi Y; Yang WY; Shu K Yi Chuan; 2016 Apr; 38(4):314-22. PubMed ID: 27103455 [TBL] [Abstract][Full Text] [Related]
27. Germination ecophysiology of Annona crassiflora seeds. da Silva EA; de Melo DL; Davide AC; de Bode N; Abreu GB; Faria JM; Hilhorst HW Ann Bot; 2007 May; 99(5):823-30. PubMed ID: 17329406 [TBL] [Abstract][Full Text] [Related]
28. Gibberellin-like effects of KAR1 on dormancy release of Avena fatua caryopses include participation of non-enzymatic antioxidants and cell cycle activation in embryos. Cembrowska-Lech D; Kępczyński J Planta; 2016 Feb; 243(2):531-48. PubMed ID: 26526413 [TBL] [Abstract][Full Text] [Related]
29. A shift in abscisic acid/gibberellin balance underlies retention of dormancy induced by seed development temperature. Tuan PA; Nguyen TN; Jordan MC; Ayele BT Plant Cell Environ; 2021 Jul; 44(7):2230-2244. PubMed ID: 33249604 [TBL] [Abstract][Full Text] [Related]
30. Epicotyl morphophysiological dormancy in seeds of Lilium polyphyllum (Liliaceae). Dhyani A; Phartyal SS; Nautiyal BP; Nautiyal MC J Biosci; 2013 Mar; 38(1):13-9. PubMed ID: 23385808 [TBL] [Abstract][Full Text] [Related]
31. Interchangeable effects of gibberellic acid and temperature on embryo growth, seed germination and epicotyl emergence in Ribes multiflorum ssp. sandalioticum (Grossulariaceae). Mattana E; Pritchard HW; Porceddu M; Stuppy WH; Bacchetta G Plant Biol (Stuttg); 2012 Jan; 14(1):77-87. PubMed ID: 21972981 [TBL] [Abstract][Full Text] [Related]
32. Tissue-specific hormonal profiling during dormancy release in macaw palm seeds. Ribeiro LM; Garcia QS; Müller M; Munné-Bosch S Physiol Plant; 2015 Apr; 153(4):627-42. PubMed ID: 25174374 [TBL] [Abstract][Full Text] [Related]
33. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Debeaujon I; Koornneef M Plant Physiol; 2000 Feb; 122(2):415-24. PubMed ID: 10677434 [TBL] [Abstract][Full Text] [Related]
34. Involvement of ABA in induction of secondary dormancy in barley (Hordeum vulgare L.) seeds. Leymarie J; Robayo-Romero ME; Gendreau E; Benech-Arnold RL; Corbineau F Plant Cell Physiol; 2008 Dec; 49(12):1830-8. PubMed ID: 18974197 [TBL] [Abstract][Full Text] [Related]
35. ABA and GA Barreto LC; Herken DMD; Silva BMR; Munné-Bosch S; Garcia QS Planta; 2020 Mar; 251(4):86. PubMed ID: 32221719 [TBL] [Abstract][Full Text] [Related]
36. Investigating seed dormancy in cotton (Gossypium hirsutum L.): understanding the physiological changes in embryo during after-ripening and germination. Wang LR; Yang XN; Gao YS; Zhang XY; Hu W; Zhou Z; Meng YL Plant Biol (Stuttg); 2019 Sep; 21(5):911-919. PubMed ID: 31077623 [TBL] [Abstract][Full Text] [Related]
37. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L. Li Z; Zhang J; Liu Y; Zhao J; Fu J; Ren X; Wang G; Wang J BMC Plant Biol; 2016 Feb; 16():41. PubMed ID: 26860357 [TBL] [Abstract][Full Text] [Related]
38. Characterization of and genetic variation for tomato seed thermo-inhibition and thermo-dormancy. Geshnizjani N; Ghaderi-Far F; Willems LAJ; Hilhorst HWM; Ligterink W BMC Plant Biol; 2018 Oct; 18(1):229. PubMed ID: 30309320 [TBL] [Abstract][Full Text] [Related]
39. Abscisic acid regulates seed germination of Vellozia species in response to temperature. Vieira BC; Bicalho EM; Munné-Bosch S; Garcia QS Plant Biol (Stuttg); 2017 Mar; 19(2):211-216. PubMed ID: 27718313 [TBL] [Abstract][Full Text] [Related]
40. Embryo transcriptome and miRNA analyses reveal the regulatory network of seed dormancy in Ginkgo biloba. Jia Z; Zhao B; Liu S; Lu Z; Chang B; Jiang H; Cui H; He Q; Li W; Jin B; Wang L Tree Physiol; 2021 Apr; 41(4):571-588. PubMed ID: 32159802 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]