BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31965933)

  • 21. Modification of Starch via the Biginelli Multicomponent Reaction.
    Esen E; Meier MAR
    Macromol Rapid Commun; 2020 Jan; 41(1):e1900375. PubMed ID: 31517416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current progress in asymmetric Biginelli reaction: an update.
    Heravi MM; Moradi R; Mohammadkhani L; Moradi B
    Mol Divers; 2018 Aug; 22(3):751-767. PubMed ID: 29936682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly enantioselective organocatalytic Biginelli and Biginelli-like condensations: reversal of the stereochemistry by tuning the 3,3'-disubstituents of phosphoric acids.
    Li N; Chen XH; Song J; Luo SW; Fan W; Gong LZ
    J Am Chem Soc; 2009 Oct; 131(42):15301-10. PubMed ID: 19785440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anomalous regioselective four-member multicomponent Biginelli reaction II: one-pot parallel synthesis of spiro heterobicyclic aliphatic rings.
    Byk G; Kabha E
    J Comb Chem; 2004; 6(4):596-603. PubMed ID: 15244421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Asymmetric organocatalytic Biginelli reactions: a new approach to quickly access optically active 3,4-dihydropyrimidin-2-(1H)-ones.
    Gong LZ; Chen XH; Xu XY
    Chemistry; 2007; 13(32):8920-6. PubMed ID: 17828720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey.
    Kappe CO
    Eur J Med Chem; 2000 Dec; 35(12):1043-52. PubMed ID: 11248403
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Green Synthesis and Urease Inhibitory Activity of Spiro-Pyrimidinethiones/Spiro-Pyrimidinones-Barbituric Acid Derivatives.
    Mohammadi Ziarani G; Asadi S; Faramarzi S; Amanlou M
    Iran J Pharm Res; 2015; 14(4):1105-14. PubMed ID: 26664377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The combined role of catalysis and solvent effects on the Biginelli reaction: improving efficiency and sustainability.
    Clark JH; Macquarrie DJ; Sherwood J
    Chemistry; 2013 Apr; 19(16):5174-82. PubMed ID: 23436300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High Glass Transition Temperature Renewable Polymers via Biginelli Multicomponent Polymerization.
    Boukis AC; Llevot A; Meier MA
    Macromol Rapid Commun; 2016 Apr; 37(7):643-9. PubMed ID: 26800511
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solvent-free and catalyst-free Biginelli reaction to synthesize ferrocenoyl dihydropyrimidine and kinetic method to express radical-scavenging ability.
    Wang R; Liu ZQ
    J Org Chem; 2012 Apr; 77(8):3952-8. PubMed ID: 22489679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of Novel α-amidino Carboxylic Acids and their Use as H-Bond Catalysts in Strecker Reaction.
    Zaghari Z; Azizian J
    Comb Chem High Throughput Screen; 2018; 21(8):609-614. PubMed ID: 30426895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient Rapid Access to Biginelli for the Multicomponent Synthesis of 1,2,3,4-Tetrahydropyrimidines in Room-Temperature Diisopropyl Ethyl Ammonium Acetate.
    Jadhav CK; Nipate AS; Chate AV; Songire VD; Patil AP; Gill CH
    ACS Omega; 2019 Dec; 4(27):22313-22324. PubMed ID: 31909314
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated library generation using sequential microwave-assisted chemistry. Application toward the Biginelli multicomponent condensation.
    Stadler A; Kappe CO
    J Comb Chem; 2001; 3(6):624-30. PubMed ID: 11703160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using chloroacetic acid as catalyst.
    Yu Y; Liu D; Liu C; Luo G
    Bioorg Med Chem Lett; 2007 Jun; 17(12):3508-10. PubMed ID: 17490874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biginelli reaction catalyzed by copper nanoparticles.
    Dewan M; Kumar A; Saxena A; De A; Mozumdar S
    PLoS One; 2012; 7(8):e43078. PubMed ID: 22912792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biginelli and Hantzsch-type reactions leading to highly functionalized dihydropyrimidinone, thiocoumarin, and pyridopyrimidinone frameworks via ring annulation with β-oxodithioesters.
    Nandi GC; Samai S; Singh MS
    J Org Chem; 2010 Nov; 75(22):7785-95. PubMed ID: 20979420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphonic acid functionalized ordered mesoporous material: a new and ecofriendly catalyst for one-pot multicomponent Biginelli reaction under solvent-free conditions.
    Pramanik M; Bhaumik A
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):933-41. PubMed ID: 24372168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biginelli Reaction: Polymer Supported Catalytic Approaches.
    Patil RV; Chavan JU; Dalal DS; Shinde VS; Beldar AG
    ACS Comb Sci; 2019 Mar; 21(3):105-148. PubMed ID: 30645098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A facile hydrothermal synthesis of high-efficient NiO nanocatalyst for preparation of 3,4-dihydropyrimidin-2(1H)-ones.
    Khashaei M; Kafi-Ahmadi L; Khademinia S; Poursattar Marjani A; Nozad E
    Sci Rep; 2022 May; 12(1):8585. PubMed ID: 35595795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A four-component modified Biginelli reaction: A novel approach for C-2 functionalized dihydropyrimidines.
    Narkhede H; Dhake A; Balasubramaniyan V
    Turk J Chem; 2021; 45(6):1980-1987. PubMed ID: 38144581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.