These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31966348)

  • 1. A droplet-based microfluidic viscometer for the measurement of blood coagulation.
    Mena SE; Li Y; McCormick J; McCracken B; Colmenero C; Ward K; Burns MA
    Biomicrofluidics; 2020 Jan; 14(1):014109. PubMed ID: 31966348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly accurate and consistent microfluidic viscometer for continuous blood viscosity measurement.
    Kang YJ; Yoon SY; Lee KH; Yang S
    Artif Organs; 2010 Nov; 34(11):944-9. PubMed ID: 20946281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printed microfluidic viscometer based on the co-flowing stream.
    Hong H; Song JM; Yeom E
    Biomicrofluidics; 2019 Jan; 13(1):014104. PubMed ID: 30867875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a simple droplet-based microfluidic capillary viscometer for low-viscosity Newtonian fluids.
    DeLaMarre MF; Keyzer A; Shippy SA
    Anal Chem; 2015 May; 87(9):4649-57. PubMed ID: 25825941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscosity Measurements Using Microfluidic Droplet Length.
    Li Y; Ward KR; Burns MA
    Anal Chem; 2017 Apr; 89(7):3996-4006. PubMed ID: 28240541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrofluidic Circuit-Based Microfluidic Viscometer for Analysis of Newtonian and Non-Newtonian Liquids under Different Temperatures.
    Lee TA; Liao WH; Wu YF; Chen YL; Tung YC
    Anal Chem; 2018 Feb; 90(3):2317-2325. PubMed ID: 29293313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Point-of-Care Blood Coagulation Assay Based on Dynamic Monitoring of Blood Viscosity Using Droplet Microfluidics.
    Chen L; Li D; Liu X; Xie Y; Shan J; Huang H; Yu X; Chen Y; Zheng W; Li Z
    ACS Sens; 2022 Aug; 7(8):2170-2177. PubMed ID: 35537208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Open sessile droplet viscometer with low sample consumption.
    Hermann M; Bachus K; Gibson GTT; Oleschuk RD
    Lab Chip; 2020 May; 20(10):1869-1876. PubMed ID: 32347278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Fabrication of a Microfluidic Viscometer Based on Electrofluidic Circuits.
    Tzeng BB; Sun YS
    Micromachines (Basel); 2018 Jul; 9(8):. PubMed ID: 30424308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Viscometer Using a Suspending Micromembrane for Measurement of Biosamples.
    Liu L; Hu D; Lam RHW
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-Viscometer for Measuring Shear-Varying Blood Viscosity over a Wide-Ranging Shear Rate.
    Kim BJ; Lee SY; Jee S; Atajanov A; Yang S
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of blood viscosity using a pressure-scanning capillary viscometer.
    Shin S; Ku Y; Park MS; Suh JS
    Clin Hemorheol Microcirc; 2004; 30(3-4):467-70. PubMed ID: 15258389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of arterial and venous whole blood clot initiation, formation, and strength by thromboelastography in anesthetized swine.
    Doering CJ; Wagg CR; Caulkett NA; McAllister RK; Brookfield CE; Paterson JM; Warren AL; Smith BL; Boysen SR
    Blood Coagul Fibrinolysis; 2014 Jan; 25(1):20-4. PubMed ID: 24126246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple capillary viscometer based on the ideal gas law.
    Phu Pham LH; Bautista L; Vargas DC; Luo X
    RSC Adv; 2018 Aug; 8(53):30441-30447. PubMed ID: 35546843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel polydimethylsiloxane microfluidic viscometer fabricated using microwire-molding.
    Zou M; Cai S; Zhao Z; Chen L; Zhao Y; Fan X; Chen S
    Rev Sci Instrum; 2015 Oct; 86(10):104302. PubMed ID: 26520971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic drop sensing in microfluidic devices: automated operation of a nanoliter viscometer.
    Srivastava N; Burns MA
    Lab Chip; 2006 Jun; 6(6):744-51. PubMed ID: 16738725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of coagulation stages of hemorrhaged swine: comparison of thromboelastography and rotational elastometry.
    Tomori T; Hupalo D; Teranishi K; Michaud S; Hammett M; Freilich D; McCarron R; Arnaud F
    Blood Coagul Fibrinolysis; 2010 Jan; 21(1):20-7. PubMed ID: 20010092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thromboelastography on plasma reveals delayed clot formation and accelerated clot lyses in HIV-1 infected persons compared with healthy controls.
    Rönsholt FF; Gerstoft J; Ullum H; Johansson PI; Katzenstein TL; Ostrowski SR
    BMC Infect Dis; 2015 Sep; 15():388. PubMed ID: 26399646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoliter viscometer for analyzing blood plasma and other liquid samples.
    Srivastava N; Davenport RD; Burns MA
    Anal Chem; 2005 Jan; 77(2):383-92. PubMed ID: 15649032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of blood viscosity using mass-detecting sensor.
    Shin S; Keum DY
    Biosens Bioelectron; 2002 May; 17(5):383-8. PubMed ID: 11888728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.