These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3196682)

  • 1. Anion binding to neutral and positively charged lipid membranes.
    Macdonald PM; Seelig J
    Biochemistry; 1988 Sep; 27(18):6769-75. PubMed ID: 3196682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of anion binding to neutral lipid membranes using 2H NMR.
    Rydall JR; Macdonald PM
    Biochemistry; 1992 Feb; 31(4):1092-9. PubMed ID: 1734958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium binding to mixed phosphatidylglycerol-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance.
    Macdonald PM; Seelig J
    Biochemistry; 1987 Mar; 26(5):1231-40. PubMed ID: 3567169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium binding to mixed cardiolipin-phosphatidylcholine bilayers as studied by deuterium nuclear magnetic resonance.
    Macdonald PM; Seelig J
    Biochemistry; 1987 Sep; 26(19):6292-8. PubMed ID: 3689777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes.
    Beschiaschvili G; Seelig J
    Biochemistry; 1990 Jan; 29(1):52-8. PubMed ID: 2322549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation.
    Kuchinka E; Seelig J
    Biochemistry; 1989 May; 28(10):4216-21. PubMed ID: 2765482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of staphylococcal delta-toxin on the phosphatidylcholine headgroup as observed using 2H-NMR.
    Rydall JR; Macdonald PM
    Biochim Biophys Acta; 1992 Nov; 1111(2):211-20. PubMed ID: 1420257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+ binding to phosphatidylcholine bilayers as studied by deuterium magnetic resonance. Evidence for the formation of a Ca2+ complex with two phospholipid molecules.
    Altenbach C; Seelig J
    Biochemistry; 1984 Aug; 23(17):3913-20. PubMed ID: 6487586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of the phosphatidylcholine headgroup to membrane surface charge in ternary mixtures of neutral, cationic, and anionic lipids: a deuterium NMR study.
    Marassi FM; Macdonald PM
    Biochemistry; 1992 Oct; 31(41):10031-6. PubMed ID: 1390761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domains in cationic lipid plus polyelectrolyte bilayer membranes: detection and characterization via 2H nuclear magnetic resonance.
    Mitrakos P; Macdonald PM
    Biochemistry; 1997 Nov; 36(44):13646-56. PubMed ID: 9354634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partitioning of local anesthetics into membranes: surface charge effects monitored by the phospholipid head-group.
    Seelig A; Allegrini PR; Seelig J
    Biochim Biophys Acta; 1988 Apr; 939(2):267-76. PubMed ID: 3355817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic amphiphile interactions with polyadenylic acid as probed via 2H-NMR.
    Mitrakos P; Macdonald PM
    Biochim Biophys Acta; 1998 Sep; 1374(1-2):21-33. PubMed ID: 9814849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of the neuronal marker dye FM1-43 with lipid membranes. Thermodynamics and lipid ordering.
    Schote U; Seelig J
    Biochim Biophys Acta; 1998 Dec; 1415(1):135-46. PubMed ID: 9858712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide binding to lipid bilayers. Binding isotherms and zeta-potential of a cyclic somatostatin analogue.
    Beschiaschvili G; Seelig J
    Biochemistry; 1990 Dec; 29(49):10995-1000. PubMed ID: 2271694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolving the two monolayers of a lipid bilayer in giant unilamellar vesicles using deuterium nuclear magnetic resonance.
    Marassi FM; Shivers RR; Macdonald PM
    Biochemistry; 1993 Sep; 32(38):9936-43. PubMed ID: 8399163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating structural changes in the lipid bilayer upon insertion of the transmembrane domain of the membrane-bound protein phospholamban utilizing 31P and 2H solid-state NMR spectroscopy.
    Dave PC; Tiburu EK; Damodaran K; Lorigan GA
    Biophys J; 2004 Mar; 86(3):1564-73. PubMed ID: 14990483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and quantification of asymmetric lipid vesicle fusion using deuterium NMR.
    Franzin CM; Macdonald PM
    Biochemistry; 1997 Mar; 36(9):2360-70. PubMed ID: 9054541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of lipid lateral distribution on the surface charge response of the phosphatidylcholine headgroup as detected using 2H nuclear magnetic resonance.
    Marassi FM; Djukic S; Macdonald PM
    Biochim Biophys Acta; 1993 Mar; 1146(2):219-28. PubMed ID: 8452858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-induced lateral segregation of cationic amphiphiles in lipid bilayer membranes as detected via 2H NMR.
    Mitrakos P; Macdonald PM
    Biochemistry; 1996 Dec; 35(51):16714-22. PubMed ID: 8988008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.