BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31967127)

  • 1. The key structural features governing the free radicals and catalytic activity of graphite/graphene oxide.
    Komeily-Nia Z; Chen JY; Nasri-Nasrabadi B; Lei WW; Yuan B; Zhang J; Qu LT; Gupta A; Li JL
    Phys Chem Chem Phys; 2020 Feb; 22(5):3112-3121. PubMed ID: 31967127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants.
    Sun H; Liu S; Zhou G; Ang HM; Tadé MO; Wang S
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5466-71. PubMed ID: 22967012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel.
    Ren X; Guo H; Feng J; Si P; Zhang L; Ci L
    Chemosphere; 2018 Jan; 191():389-399. PubMed ID: 29054079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene oxide as an effective catalyst for wet air oxidation of phenol.
    Yang S; Cui Y; Sun Y; Yang H
    J Hazard Mater; 2014 Sep; 280():55-62. PubMed ID: 25127389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Graphite Oxide with Different Surface Oxygen Contents Assisted Microwave Radiation.
    Ibarra-Hernández A; Vega-Rios A; Osuna V
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29438280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the catalytic behaviour of HKUST-1 by graphene oxide for phenol oxidation.
    Huang K; Xu Y
    Environ Technol; 2021 Feb; 42(5):694-704. PubMed ID: 31293218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wet air oxidation of cresylic spent caustic - A model compound study over graphene oxide (GO) and ruthenium/GO catalysts.
    Barge AS; Vaidya PD
    J Environ Manage; 2018 Apr; 212():479-489. PubMed ID: 29459340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.
    Liu S; Zeng TH; Hofmann M; Burcombe E; Wei J; Jiang R; Kong J; Chen Y
    ACS Nano; 2011 Sep; 5(9):6971-80. PubMed ID: 21851105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Performance of Polyurethane Hybrid Membranes for CO2 Separation by Incorporating Graphene Oxide: The Relationship between Membrane Performance and Morphology of Graphene Oxide.
    Wang T; Zhao L; Shen JN; Wu LG; Van der Bruggen B
    Environ Sci Technol; 2015 Jul; 49(13):8004-11. PubMed ID: 26024066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two dimensional soft material: new faces of graphene oxide.
    Kim J; Cote LJ; Huang J
    Acc Chem Res; 2012 Aug; 45(8):1356-64. PubMed ID: 22663082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced catalytic activity of α-FeOOH-rGO supported on active carbon fiber (ACF) for degradation of phenol and quinolone in the solar-Fenton system.
    Wang Y; Tian H; Yu Y; Hu C
    Chemosphere; 2018 Oct; 208():931-941. PubMed ID: 30068037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation and degradation of graphitic materials by naphthalene-degrading bacteria.
    Liu L; Zhu C; Fan M; Chen C; Huang Y; Hao Q; Yang J; Wang H; Sun D
    Nanoscale; 2015 Aug; 7(32):13619-28. PubMed ID: 26205788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic aspects of the radiation-chemical reduction of graphene oxide to graphene-like materials.
    Flyunt R; Knolle W; Kahnt A; Prager A; Lotnyk A; Malig J; Guldi D; Abel B
    Int J Radiat Biol; 2014 Jun; 90(6):486-94. PubMed ID: 24678798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene oxide and H2 production from bioelectrochemical graphite oxidation.
    Lu L; Zeng C; Wang L; Yin X; Jin S; Lu A; Jason Ren Z
    Sci Rep; 2015 Nov; 5():16242. PubMed ID: 26573014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary zone electrophoresis of graphene oxide and chemically converted graphene.
    Müller MB; Quirino JP; Nesterenko PN; Haddad PR; Gambhir S; Li D; Wallace GG
    J Chromatogr A; 2010 Nov; 1217(48):7593-7. PubMed ID: 20980009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route.
    Pan S; Aksay IA
    ACS Nano; 2011 May; 5(5):4073-83. PubMed ID: 21469697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-doped graphene for generation and evolution of reactive radicals by metal-free catalysis.
    Duan X; Ao Z; Sun H; Indrawirawan S; Wang Y; Kang J; Liang F; Zhu ZH; Wang S
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4169-78. PubMed ID: 25632991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.
    Oh J; Chang YH; Kim YH; Park S
    Phys Chem Chem Phys; 2016 Apr; 18(16):10882-6. PubMed ID: 27040040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between the microstructures of graphite oxides and their catalytic behaviors in air oxidation of benzyl alcohol.
    Geng L; Wu S; Zou Y; Jia M; Zhang W; Yan W; Liu G
    J Colloid Interface Sci; 2014 May; 421():71-7. PubMed ID: 24594034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.