These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 31967160)

  • 21. A theoretical study of dispersion-to-aggregation of nanoparticles in adsorbing polymers using molecular dynamics simulations.
    Cao XZ; Merlitz H; Wu CX; Ungar G; Sommer JU
    Nanoscale; 2016 Apr; 8(13):6964-8. PubMed ID: 26965335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular-Level "Observations" of the Behavior of Gold Nanoparticles in Aqueous Solution and Interacting with a Lipid Bilayer Membrane.
    Oroskar PA; Jameson CJ; Murad S
    Methods Mol Biol; 2019; 2000():303-359. PubMed ID: 31148024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
    Shang L; Nienhaus GU
    Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Receptor-Mediated Endocytosis of Nanoparticles: Roles of Shapes, Orientations, and Rotations of Nanoparticles.
    Tang H; Zhang H; Ye H; Zheng Y
    J Phys Chem B; 2018 Jan; 122(1):171-180. PubMed ID: 29199830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding, unbinding and aggregation of crescent-shaped nanoparticles on nanoscale tubular membranes.
    Spangler EJ; Olinger AD; Kumar PBS; Laradji M
    Soft Matter; 2021 Jan; 17(4):1016-1027. PubMed ID: 33284936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular dynamics simulation study of spherical nanoparticles in a nematogenic matrix: anchoring, interactions, and phase behavior.
    Xu J; Bedrov D; Smith GD; Glaser MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011704. PubMed ID: 19257049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the shape deformation of biomembrane tubes with theoretical analysis and computer simulation.
    Liu X; Tian F; Yue T; Zhang X; Zhong C
    Soft Matter; 2016 Nov; 12(44):9077-9085. PubMed ID: 27747359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Steered molecular dynamics simulations reveal a self-protecting configuration of nanoparticles during membrane penetration.
    Nademi Y; Tang T; Uludağ H
    Nanoscale; 2018 Sep; 10(37):17671-17682. PubMed ID: 30206609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes.
    Angelikopoulos P; Sarkisov L; Cournia Z; Gkeka P
    Nanoscale; 2017 Jan; 9(3):1040-1048. PubMed ID: 27740657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Partner-facilitating transmembrane penetration of nanoparticles: a biological test in silico.
    Wang W; Yang R; Zhang F; Yuan B; Yang K; Ma Y
    Nanoscale; 2018 Jun; 10(24):11670-11678. PubMed ID: 29897087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A spontaneous penetration mechanism of patterned nanoparticles across a biomembrane.
    Li Y; Zhang X; Cao D
    Soft Matter; 2014 Sep; 10(35):6844-56. PubMed ID: 25082334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elucidating and tuning the strain-induced non-linear behavior of polymer nanocomposites: a detailed molecular dynamics simulation study.
    Shen J; Liu J; Gao Y; Li X; Zhang L
    Soft Matter; 2014 Jul; 10(28):5099-113. PubMed ID: 24906702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane-mediated aggregation of anisotropically curved nanoparticles.
    Olinger AD; Spangler EJ; Kumar PB; Laradji M
    Faraday Discuss; 2016; 186():265-75. PubMed ID: 26778353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Importance of heterogeneous aggregation for NP fate in natural and engineered systems.
    Therezien M; Thill A; Wiesner MR
    Sci Total Environ; 2014 Jul; 485-486():309-318. PubMed ID: 24727597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption and diffusion of colloidal Au nanoparticles at a liquid-vapor interface.
    Poddar NN; Amar JG
    J Chem Phys; 2014 Jun; 140(24):244702. PubMed ID: 24985663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aggregation dynamics of nanoparticles at solid-liquid interfaces.
    Tian X; Zheng H; Mirsaidov U
    Nanoscale; 2017 Jul; 9(28):10044-10050. PubMed ID: 28685791
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Simulation Study on the Interaction Between Pollutant Nanoparticles and the Pulmonary Surfactant Monolayer.
    Yue K; Sun X; Tang J; Wei Y; Zhang X
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31277358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anisotropic Self-Assembly of Hairy Inorganic Nanoparticles.
    Yi C; Zhang S; Webb KT; Nie Z
    Acc Chem Res; 2017 Jan; 50(1):12-21. PubMed ID: 27997119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the influence of citrate-capped gold nanoparticles on an amyloidogenic protein.
    Brancolini G; Corazza A; Vuano M; Fogolari F; Mimmi MC; Bellotti V; Stoppini M; Corni S; Esposito G
    ACS Nano; 2015 Mar; 9(3):2600-13. PubMed ID: 25695203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.