These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31967453)

  • 41. Uniform Fe3O4 coating on flower-like ZnO nanostructures by atomic layer deposition for electromagnetic wave absorption.
    Wan G; Wang G; Huang X; Zhao H; Li X; Wang K; Yu L; Peng X; Qin Y
    Dalton Trans; 2015 Nov; 44(43):18804-9. PubMed ID: 26458422
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanotribological Properties of ALD-Made Ultrathin MoS
    Huang Y; Liu L; Yang J; Chen Y
    Langmuir; 2019 Mar; 35(10):3651-3657. PubMed ID: 30777760
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uniform Growth of Sub-5-Nanometer High-κ Dielectrics on MoS
    Price KM; Schauble KE; McGuire FA; Farmer DB; Franklin AD
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):23072-23080. PubMed ID: 28653822
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Role of ALD-ZnO Seed Layers in the Growth of ZnO Nanorods for Hydrogen Sensing.
    Lu Y; Hsieh C; Su G
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31340500
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Atomic-layer-deposition-assisted ZnO nanoparticles for oxide charge-trap memory thin-film transistors.
    Seo GH; Yun DJ; Lee WH; Yoon SM
    Nanotechnology; 2017 Feb; 28(7):075202. PubMed ID: 27958196
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery.
    Luo X; Piernavieja-Hermida M; Lu J; Wu T; Wen J; Ren Y; Miller D; Zak Fang Z; Lei Y; Amine K
    Nanotechnology; 2015 Apr; 26(16):164003. PubMed ID: 25829367
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ALD TiO
    Ren W; Zhou W; Zhang H; Cheng C
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):487-495. PubMed ID: 27966859
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facile synthesis and enhanced luminescent properties of ZnO/HfO2 core-shell nanowires.
    Zhang Y; Lu HL; Wang T; Ren QH; Gu YZ; Li DH; Zhang DW
    Nanoscale; 2015 Oct; 7(37):15462-8. PubMed ID: 26339774
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characteristics of ZnO films prepared by atomic layer deposition for transparent electronic devices.
    Lee DH; Kim HS; Noh SJ
    J Nanosci Nanotechnol; 2011 May; 11(5):4312-6. PubMed ID: 21780448
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced Photocarrier Generation with Selectable Wavelengths by M-Decorated-CuInS
    Tang SY; Medina H; Yen YT; Chen CW; Yang TY; Wei KH; Chueh YL
    Small; 2019 Feb; 15(8):e1803529. PubMed ID: 30663255
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preferential growth of ZnO thin films by the atomic layer deposition technique.
    Pung SY; Choy KL; Hou X; Shan C
    Nanotechnology; 2008 Oct; 19(43):435609. PubMed ID: 21832704
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication, Mechanisms, and Properties of High-Performance Flexible Transparent Conductive Gas-Barrier Films Based on Ag Nanowires and Atomic Layer Deposition.
    Su DY; Hsu CC; Lai WH; Tsai FY
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34212-34221. PubMed ID: 31465192
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Growth Mechanism of Transition Metal Dichalcogenides by using Sulfurization of Pre-deposited Transition Metals and the 2D Crystal Hetero-structure Establishment.
    Wu CR; Chang XR; Wu CH; Lin SY
    Sci Rep; 2017 Feb; 7():42146. PubMed ID: 28176836
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Angstrom Thick ZnO Passivation Layer to Improve the Photoelectrochemical Water Splitting Performance of a TiO
    Ghobadi A; Ghobadi TGU; Karadas F; Ozbay E
    Sci Rep; 2018 Nov; 8(1):16322. PubMed ID: 30397219
    [TBL] [Abstract][Full Text] [Related]  

  • 55. HfO(2) on MoS(2) by atomic layer deposition: adsorption mechanisms and thickness scalability.
    McDonnell S; Brennan B; Azcatl A; Lu N; Dong H; Buie C; Kim J; Hinkle CL; Kim MJ; Wallace RM
    ACS Nano; 2013 Nov; 7(11):10354-61. PubMed ID: 24116949
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis of Epitaxial MoS
    Goto M; Yamane I; Arasawa S; Yanase T; Yokokura S; Nagahama T; Chueh YL; Shin Y; Kim Y; Shimada T
    ACS Omega; 2022 Nov; 7(43):39362-39369. PubMed ID: 36340117
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Atomic Layer Deposition of High-Quality Al
    Huang B; Zheng M; Zhao Y; Wu J; Thong JTL
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35438-35443. PubMed ID: 31476859
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 'Sandwich'-like hybrid ZnO thin films produced by a combination of atomic layer deposition and wet-chemistry using a mercapto silane as single organic precursor.
    Markovic MK; Peter R; Badovinac IJ; Saric I; Perčić M; Radičić R; Marković D; Knez M; Ambrožić G
    Nanotechnology; 2020 May; 31(18):185603. PubMed ID: 31995541
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dimensional-Hybrid Structures of 2D Materials with ZnO Nanostructures via pH-Mediated Hydrothermal Growth for Flexible UV Photodetectors.
    Lee YB; Kim SK; Lim YR; Jeon IS; Song W; Myung S; Lee SS; Lim J; An KS
    ACS Appl Mater Interfaces; 2017 May; 9(17):15031-15037. PubMed ID: 28406010
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanoscale Au-ZnO Heterostructure Developed by Atomic Layer Deposition Towards Amperometric H
    Xu H; Wei Z; Verpoort F; Hu J; Zhuiykov S
    Nanoscale Res Lett; 2020 Feb; 15(1):41. PubMed ID: 32065320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.