These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31967458)

  • 1. Synthesis of V-doped In
    Kim MG; Jeong J; Choi Y; Park J; Park E; Cheon CH; Kim NK; Min BK; Kim W
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11890-11897. PubMed ID: 31967458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radial Dopant Placement for Tuning Plasmonic Properties in Metal Oxide Nanocrystals.
    Crockett BM; Jansons AW; Koskela KM; Johnson DW; Hutchison JE
    ACS Nano; 2017 Aug; 11(8):7719-7728. PubMed ID: 28718619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defect Engineering in Plasmonic Metal Oxide Nanocrystals.
    Runnerstrom EL; Bergerud A; Agrawal A; Johns RW; Dahlman CJ; Singh A; Selbach SM; Milliron DJ
    Nano Lett; 2016 May; 16(5):3390-8. PubMed ID: 27111427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous Growth of Metal Oxide Nanocrystals: Enhanced Control of Nanocrystal Size and Radial Dopant Distribution.
    Jansons AW; Hutchison JE
    ACS Nano; 2016 Jul; 10(7):6942-51. PubMed ID: 27328328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced photo-catalytic activity of ordered mesoporous indium oxide nanocrystals in the conversion of CO
    Gondal MA; Dastageer MA; Oloore LE; Baig U; Rashid SG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jul; 52(8):785-793. PubMed ID: 28368691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional Sn- and Fe-Codoped In2O3 Colloidal Nanocrystals: Plasmonics and Magnetism.
    Tandon B; Shanker GS; Nag A
    J Phys Chem Lett; 2014 Jul; 5(13):2306-11. PubMed ID: 26279551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly selective and active Cu-In
    Ye Y; Liu Y; Li Z; Zou X; Wu H; Lin S
    J Colloid Interface Sci; 2021 Mar; 586():528-537. PubMed ID: 33198976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications.
    Wang G; Peng Q; Li Y
    Acc Chem Res; 2011 May; 44(5):322-32. PubMed ID: 21395256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring indium oxide nanocrystal synthesis conditions for air-stable high-performance solution-processed thin-film transistors.
    Swisher SL; Volkman SK; Subramanian V
    ACS Appl Mater Interfaces; 2015 May; 7(19):10069-75. PubMed ID: 25915094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benefitting from Dopant Loss and Ostwald Ripening in Mn Doping of II-VI Semiconductor Nanocrystals.
    Zhai Y; Shim M
    Nanoscale Res Lett; 2015 Dec; 10(1):423. PubMed ID: 26510444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and Green Electric-Explosion Preparation of Spherical Indium Nanocrystals with Abundant Metal Defects for Highly-Selective CO
    Jiang M; Zhu M; Wang H; Song X; Liang J; Lin D; Li C; Cui J; Li F; Zhang XL; Tie Z; Jin Z
    Nano Lett; 2023 Jan; 23(1):291-297. PubMed ID: 36563295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterisation of polygonal indium tin oxide nanocrystals.
    Koo BR; Park BK; Kim CY; Oh ST; Ahn HJ
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7590-5. PubMed ID: 24245298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of monodisperse spherical nanocrystals.
    Park J; Joo J; Kwon SG; Jang Y; Hyeon T
    Angew Chem Int Ed Engl; 2007; 46(25):4630-60. PubMed ID: 17525914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox chemistries and plasmon energies of photodoped In2O3 and Sn-doped In2O3 (ITO) nanocrystals.
    Schimpf AM; Lounis SD; Runnerstrom EL; Milliron DJ; Gamelin DR
    J Am Chem Soc; 2015 Jan; 137(1):518-24. PubMed ID: 25490191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Step Synthesis of Monodisperse In-Doped ZnO Nanocrystals.
    Wang Q; Yang Y; He H; Chen D; Ye Z; Jin Y
    Nanoscale Res Lett; 2010 Mar; 5(5):882-8. PubMed ID: 20672040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the Mechanism of Excitonic Splitting in In
    Yin P; Hegde M; Tan Y; Chen S; Garnet N; Radovanovic PV
    ACS Nano; 2018 Nov; 12(11):11211-11218. PubMed ID: 30335948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting Tunable Syngas Formation via Electrochemical CO
    Xie H; Chen S; Ma F; Liang J; Miao Z; Wang T; Wang HL; Huang Y; Li Q
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36996-37004. PubMed ID: 30303003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grain boundary and interface interaction of metal (copper/indium) oxides to boost efficient electrocatalytic carbon dioxide reduction into syngas.
    He R; Luo X; Li L; Zhang Y; Peng L; Xu N; Qiao J
    J Colloid Interface Sci; 2024 Mar; 658():1016-1024. PubMed ID: 38160124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.