These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31967464)

  • 1. Elastin-Based Thermoresponsive Shape-Memory Hydrogels.
    Zhang Y; Desai MS; Wang T; Lee SW
    Biomacromolecules; 2020 Mar; 21(3):1149-1156. PubMed ID: 31967464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Phase Transition of Elastin-Like Polypeptide Chains Regulates Thermoresponsive Properties of Elastomeric Protein-Based Hydrogels.
    Duan T; Li H
    Biomacromolecules; 2020 Jun; 21(6):2258-2267. PubMed ID: 32208723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Physicomechanical and Drug Release Properties of In Situ Forming Thermoresponsive Elastin-like Polypeptide Hydrogels.
    Lee K; Noh Y; Bae Y; Kang S; Cha C
    Biomacromolecules; 2022 Dec; 23(12):5193-5201. PubMed ID: 36378752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Elastin-like Protein Temperature Transition on PEG-ELP Hybrid Hydrogel Properties.
    Meco E; Lampe KJ
    Biomacromolecules; 2019 May; 20(5):1914-1925. PubMed ID: 30966747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transparent, High-Strength, and Shape Memory Hydrogels from Thermo-Responsive Amino Acid-Derived Vinyl Polymer Networks.
    Koga T; Tomimori K; Higashi N
    Macromol Rapid Commun; 2020 Apr; 41(7):e1900650. PubMed ID: 32078206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Elastin-Like Polypeptide-Poly(ethylene glycol) Multiblock Physical Networks.
    Araújo A; Olsen BD; Machado AV
    Biomacromolecules; 2018 Feb; 19(2):329-339. PubMed ID: 29253332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast and Programmable Shape Memory Hydrogel of Gelatin Soaked in Tannic Acid Solution.
    Yang S; Zhang Y; Wang T; Sun W; Tong Z
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46701-46709. PubMed ID: 32960035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein polymer hydrogels by in situ, rapid and reversible self-gelation.
    Asai D; Xu D; Liu W; Garcia Quiroz F; Callahan DJ; Zalutsky MR; Craig SL; Chilkoti A
    Biomaterials; 2012 Jul; 33(21):5451-8. PubMed ID: 22538198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NIR-Triggered Rapid Shape Memory PAM-GO-Gelatin Hydrogels with High Mechanical Strength.
    Huang J; Zhao L; Wang T; Sun W; Tong Z
    ACS Appl Mater Interfaces; 2016 May; 8(19):12384-92. PubMed ID: 27116394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilayer Hydrogel Composed of Elastin-Mimetic Polypeptides as a Bio-Actuator with Bidirectional and Reversible Bending Behaviors.
    Kamada R; Miyazaki H; Janairo JIB; Chuman Y; Sakaguchi K
    Molecules; 2023 Jul; 28(13):. PubMed ID: 37446933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring stimuli-responsive elastin-like polypeptide for biomedicine and beyond: potential application as programmable soft actuators.
    Noh Y; Son E; Cha C
    Front Bioeng Biotechnol; 2023; 11():1284226. PubMed ID: 37965051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair.
    Lim DW; Nettles DL; Setton LA; Chilkoti A
    Biomacromolecules; 2008 Jan; 9(1):222-30. PubMed ID: 18163573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Control of Hydrogel Microstructure by Kinetic Competition between Self-Assembly and Crosslinking of Elastin-like Proteins.
    Wang H; Paul A; Nguyen D; Enejder A; Heilshorn SC
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):21808-21815. PubMed ID: 29869869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic engineering of self-assembled protein hydrogel based on elastin-like sequences with metal binding functionality.
    Lao UL; Sun M; Matsumoto M; Mulchandani A; Chen W
    Biomacromolecules; 2007 Dec; 8(12):3736-9. PubMed ID: 18039006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of macroporous thermosensitive hydrogels from recombinant elastin-like polymers.
    Martín L; Alonso M; Girotti A; Arias FJ; Rodríguez-Cabello JC
    Biomacromolecules; 2009 Nov; 10(11):3015-22. PubMed ID: 19795832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength.
    Li N; Chen G; Chen W; Huang J; Tian J; Wan X; He M; Zhang H
    Carbohydr Polym; 2017 Dec; 178():159-165. PubMed ID: 29050581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swelling and mechanical behaviors of chemically cross-linked hydrogels of elastin-like polypeptides.
    Trabbic-Carlson K; Setton LA; Chilkoti A
    Biomacromolecules; 2003; 4(3):572-80. PubMed ID: 12741772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Healing Elastin-Bioglass Hydrogels.
    Zeng Q; Desai MS; Jin HE; Lee JH; Chang J; Lee SW
    Biomacromolecules; 2016 Aug; 17(8):2619-25. PubMed ID: 27380227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.
    Jeon SJ; Hauser AW; Hayward RC
    Acc Chem Res; 2017 Feb; 50(2):161-169. PubMed ID: 28181798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.