BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 31967519)

  • 1. Deconstructing Reorienting of Attention: Cue Predictiveness Modulates the Inhibition of the No-target Side and the Hemispheric Distribution of the P1 Response to Invalid Targets.
    Doricchi F; Pellegrino M; Marson F; Pinto M; Caratelli L; Cestari V; Rossi-Arnaud C; Lasaponara S
    J Cogn Neurosci; 2020 Jun; 32(6):1046-1060. PubMed ID: 31967519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in predictive cuing modulate the hemispheric distribution of the P1 inhibitory response to attentional targets.
    Lasaponara S; D' Onofrio M; Dragone A; Pinto M; Caratelli L; Doricchi F
    Neuropsychologia; 2017 May; 99():156-164. PubMed ID: 28283318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ERP evidence for selective drop in attentional costs in uncertain environments: challenging a purely premotor account of covert orienting of attention.
    Lasaponara S; Chica AB; Lecce F; Lupianez J; Doricchi F
    Neuropsychologia; 2011 Jul; 49(9):2648-57. PubMed ID: 21640737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.
    Doricchi F; Macci E; Silvetti M; Macaluso E
    Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Faster, more intense! The relation between electrophysiological reflections of attentional orienting, sensory gain control, and speed of responding.
    Talsma D; Mulckhuyse M; Slagter HA; Theeuwes J
    Brain Res; 2007 Oct; 1178():92-105. PubMed ID: 17931607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Express attentional re-engagement but delayed entry into consciousness following invalid spatial cues in visual search.
    Brisson B; Jolicoeur P
    PLoS One; 2008; 3(12):e3967. PubMed ID: 19088847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involuntary orienting of attention to a sound desynchronizes the occipital alpha rhythm and improves visual perception.
    Feng W; Störmer VS; Martinez A; McDonald JJ; Hillyard SA
    Neuroimage; 2017 Apr; 150():318-328. PubMed ID: 28213117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention.
    Doesburg SM; Green JJ; McDonald JJ; Ward LM
    Brain Res; 2009 Dec; 1303():97-110. PubMed ID: 19782056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of the global/local probability effect on the neural processing of cues and targets. A functional systems approach.
    Arjona A; Rodríguez E; Morales M; Gómez CM
    Int J Psychophysiol; 2018 Dec; 134():52-61. PubMed ID: 30342061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nicotine modulates reorienting of visuospatial attention and neural activity in human parietal cortex.
    Thiel CM; Zilles K; Fink GR
    Neuropsychopharmacology; 2005 Apr; 30(4):810-20. PubMed ID: 15668726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The attentional effects of peripheral cueing as revealed by two event-related potential studies.
    Fu S; Fan S; Chen L; Zhuo Y
    Clin Neurophysiol; 2001 Jan; 112(1):172-85. PubMed ID: 11137676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cost of attentional reorienting on conscious visual perception: an MEG study.
    Spagna A; Bayle DJ; Romeo Z; Seidel-Malkinson T; Liu J; Yahia-Cherif L; Chica AB; Bartolomeo P
    Cereb Cortex; 2023 Feb; 33(5):2048-2060. PubMed ID: 35609335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Event-related potentials reveal dissociable mechanisms for orienting and focusing visuospatial attention.
    Fu S; Caggiano DM; Greenwood PM; Parasuraman R
    Brain Res Cogn Brain Res; 2005 May; 23(2-3):341-53. PubMed ID: 15820641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating the attentional bias in unilateral neglect: the effects of the strategic set.
    Bartolomeo P; Siéroff E; Decaix C; Chokron S
    Exp Brain Res; 2001 Apr; 137(3-4):432-44. PubMed ID: 11355388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex.
    Vossel S; Thiel CM; Fink GR
    Neuroimage; 2006 Sep; 32(3):1257-64. PubMed ID: 16846742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities.
    Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E
    J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attentional capture by context cues, not inhibition of cue singletons, explains same location costs.
    Schönhammer JG; Becker SI; Kerzel D
    J Exp Psychol Hum Percept Perform; 2020 Jun; 46(6):610-628. PubMed ID: 32191113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Response of the Left Ventral Attentional System to Invalid Targets and its Implication for the Spatial Neglect Syndrome: a Multivariate fMRI Investigation.
    Silvetti M; Lasaponara S; Lecce F; Dragone A; Macaluso E; Doricchi F
    Cereb Cortex; 2016 Dec; 26(12):4551-4562. PubMed ID: 26405052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological correlates of stimulus-driven reorienting deficits after interference with right parietal cortex during a spatial attention task: a TMS-EEG study.
    Capotosto P; Corbetta M; Romani GL; Babiloni C
    J Cogn Neurosci; 2012 Dec; 24(12):2363-71. PubMed ID: 22905824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.