These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31967531)

  • 1. A feasibility study of eye gaze with biofeedback in a human-robot interface.
    Sakamaki I; Adams K; Tavakoli M; Wiebe S
    Assist Technol; 2022 Mar; 34(2):148-156. PubMed ID: 31967531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of feedback and target size on eye gaze accuracy in an off-screen task.
    Sakamaki I; Adams K; Tavakoli M; Wiebe SA
    Disabil Rehabil Assist Technol; 2021 Oct; 16(7):769-779. PubMed ID: 32100583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of galvanic skin response feedback on user experience in gaze-controlled gaming: A pilot study.
    Larradet F; Barresi G; Mattos LS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2458-2461. PubMed ID: 29060396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrotactile sensory substitution for electromyographic control of object manipulation.
    Rombokas E; Stepp CE; Chang C; Malhotra M; Matsuoka Y
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2226-32. PubMed ID: 23508245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaze-Contingent Motor Channelling, haptic constraints and associated cognitive demand for robotic MIS.
    Mylonas GP; Kwok KW; James DR; Leff D; Orihuela-Espina F; Darzi A; Yang GZ
    Med Image Anal; 2012 Apr; 16(3):612-31. PubMed ID: 20889367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adding Haptic Feedback to Virtual Environments With a Cable-Driven Robot Improves Upper Limb Spatio-Temporal Parameters During a Manual Handling Task.
    Faure C; Fortin-Cote A; Robitaille N; Cardou P; Gosselin C; Laurendeau D; Mercier C; Bouyer L; McFadyen BJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2246-2254. PubMed ID: 32877337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People With Motion Impairments.
    Li S; Zhang X; Webb JD
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2824-2835. PubMed ID: 28278455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative to direct haptic feedback, remote vibrotactile feedback improves but slows object manipulation.
    Stepp CE; Matsuoka Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2089-92. PubMed ID: 21095683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Robust Robot Control in Cartesian Space Using an Infrastructureless Head- and Eye-Gaze Interface.
    Wöhle L; Gebhard M
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33807599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary testing by adults of a haptics-assisted robot platform designed for children with physical impairments to access play.
    Sakamaki I; Adams K; Medina MFG; Cruz JLC; Jafari N; Tavakoli M; Janz H
    Assist Technol; 2018; 30(5):242-250. PubMed ID: 28696831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and application of real-time visual attention model for the exploration of 3D virtual environments.
    Hillaire S; Lécuyer A; Regia-Corte T; Cozot R; Royan J; Breton G
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):356-68. PubMed ID: 21931178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delay of gaze fixation during reaching movement with the non-dominant hand to a distant target.
    Rand MK; Ringenbach SDR
    Exp Brain Res; 2022 May; 240(5):1629-1647. PubMed ID: 35366070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eye-gaze control of a wheelchair mounted 6DOF assistive robot for activities of daily living.
    Sunny MSH; Zarif MII; Rulik I; Sanjuan J; Rahman MH; Ahamed SI; Wang I; Schultz K; Brahmi B
    J Neuroeng Rehabil; 2021 Dec; 18(1):173. PubMed ID: 34922590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visuomotor feedback gains are modulated by gaze position.
    de Brouwer AJ; Gallivan JP; Flanagan JR
    J Neurophysiol; 2018 Nov; 120(5):2522-2531. PubMed ID: 30183472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the Role of Gaze Tracking in Optimizing Humans-In-The-Loop Telerobotic Operation Using Multimodal Feedback.
    Bolarinwa J; Eimontaite I; Mitchell T; Dogramadzi S; Caleb-Solly P
    Front Robot AI; 2021; 8():578596. PubMed ID: 34671646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eye-hand re-coordination: A pilot investigation of gaze and reach biofeedback in chronic stroke.
    Rizzo JR; Beheshti M; Shafieesabet A; Fung J; Hosseini M; Rucker JC; Snyder LH; Hudson TE
    Prog Brain Res; 2019; 249():361-374. PubMed ID: 31325995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Object manipulation improvements due to single session training outweigh the differences among stimulation sites during vibrotactile feedback.
    Stepp CE; Matsuoka Y
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):677-85. PubMed ID: 21984521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeated training with augmentative vibrotactile feedback increases object manipulation performance.
    Stepp CE; An Q; Matsuoka Y
    PLoS One; 2012; 7(2):e32743. PubMed ID: 22384283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Haptic Response for Contextual Human Robot Interaction.
    Mugisha S; Guda VK; Chevallereau C; Zoppi M; Molfino R; Chablat D
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye gaze performance for children with severe physical impairments using gaze-based assistive technology-A longitudinal study.
    Borgestig M; Sandqvist J; Parsons R; Falkmer T; Hemmingsson H
    Assist Technol; 2016; 28(2):93-102. PubMed ID: 26496529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.