These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 31967630)
1. Biomimetic total syntheses of baefrutones A-D, baeckenon B, and frutescones A, D-F. Hou JQ; Yu JH; Zhao H; Dong YY; Peng QS; Zhang BB; Wang H Org Biomol Chem; 2020 Feb; 18(6):1135-1139. PubMed ID: 31967630 [TBL] [Abstract][Full Text] [Related]
2. S-Euglobals: biomimetic synthesis, antileishmanial, antimalarial, and antimicrobial activities. Bharate SB; Khan SI; Tekwani BL; Jacob M; Khan IA; Singh IP Bioorg Med Chem; 2008 Feb; 16(3):1328-36. PubMed ID: 17976995 [TBL] [Abstract][Full Text] [Related]
3. Anticandidal formyl phloroglucinol meroterpenoids: Biomimetic synthesis and in vitro evaluation. Zhong LF; Shang ZC; Sun FJ; Zhu PH; Yin Y; Kong LY; Yang MH Bioorg Chem; 2020 Nov; 104():104248. PubMed ID: 32916392 [TBL] [Abstract][Full Text] [Related]
4. Divergent Biomimetic Total Syntheses of Ganocins A-C, Ganocochlearins C and D, and Cochlearol T. Shao H; Gao X; Wang ZT; Gao Z; Zhao YM Angew Chem Int Ed Engl; 2020 May; 59(19):7419-7424. PubMed ID: 32096300 [TBL] [Abstract][Full Text] [Related]
5. Visible-Light Photoredox Catalysis Enables the Biomimetic Synthesis of Nyingchinoids A, B, and D, and Rasumatranin D. Hart JD; Burchill L; Day AJ; Newton CG; Sumby CJ; Huang DM; George JH Angew Chem Int Ed Engl; 2019 Feb; 58(9):2791-2794. PubMed ID: 30648330 [TBL] [Abstract][Full Text] [Related]
6. Biomimetic total syntheses of chromane meroterpenoids, guadials B and C, guapsidial A and psiguajadial D. Dethe DH; B VK; Maiti R Org Biomol Chem; 2018 Jul; 16(26):4793-4796. PubMed ID: 29931003 [TBL] [Abstract][Full Text] [Related]
7. Biomimetic synthesis of the apoptosis-inducing thiazinoquinone thiaplidiaquinone A. Carbone A; Lucas CL; Moody CJ J Org Chem; 2012 Oct; 77(20):9179-89. PubMed ID: 23020609 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic synthesis of two salmahyrtisanes: salmahyrtisol A and hippospongide A. Martín M; Urosa A; Marcos IS; Díez D; Padrón JM; Basabe P J Org Chem; 2015 May; 80(9):4566-72. PubMed ID: 25853618 [TBL] [Abstract][Full Text] [Related]
9. Carvone and perillaldehyde interfere with the serum-induced formation of filamentous structures in Candida albicans at substantially lower concentrations than those causing significant inhibition of growth. McGeady P; Wansley DL; Logan DA J Nat Prod; 2002 Jul; 65(7):953-5. PubMed ID: 12141851 [TBL] [Abstract][Full Text] [Related]
10. Biomimetic Dearomatization Strategies in the Total Synthesis of Meroterpenoid Natural Products. George JH Acc Chem Res; 2021 Apr; 54(8):1843-1855. PubMed ID: 33793197 [TBL] [Abstract][Full Text] [Related]
11. Frutescone A-G, Tasmanone-Based Meroterpenoids from the aerial parts of Baeckea frutescens. Hou JQ; Guo C; Zhao JJ; He QW; Zhang BB; Wang H J Org Chem; 2017 Feb; 82(3):1448-1457. PubMed ID: 28029250 [TBL] [Abstract][Full Text] [Related]
12. Structural Elucidation and Biomimetic Synthesis of (±)-Cochlactone A with Anti-Inflammatory Activity. Peng XR; Lu SY; Shao LD; Zhou L; Qiu MH J Org Chem; 2018 May; 83(10):5516-5522. PubMed ID: 29707952 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic Total Synthesis of Hyperjapones A-E and Hyperjaponols A and C. Lam HC; Spence JT; George JH Angew Chem Int Ed Engl; 2016 Aug; 55(35):10368-71. PubMed ID: 27461748 [TBL] [Abstract][Full Text] [Related]
14. Modifications of the chemical structure of terpenes in antiplasmodial and antifungal drug research. Olagnier D; Costes P; Berry A; Linas MD; Urrutigoity M; Dechy-Cabaret O; Benoit-Vical F Bioorg Med Chem Lett; 2007 Nov; 17(22):6075-8. PubMed ID: 17904365 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic Total Syntheses of Sanctis A-B with Structure Revision. Huo L; Dong C; Wang M; Lu X; Zhang W; Yang B; Yuan Y; Qiu S; Liu H; Tan H Org Lett; 2020 Feb; 22(3):934-938. PubMed ID: 31961698 [TBL] [Abstract][Full Text] [Related]
16. The plakotenins: biomimetic Diels-Alder reactions, total synthesis, structural investigations, and chemical biology. Bourcet E; Kaufmann L; Arzt S; Bihlmeier A; Klopper W; Schepers U; Bräse S Chemistry; 2012 Nov; 18(47):15004-20. PubMed ID: 23037572 [TBL] [Abstract][Full Text] [Related]
17. Chemical composition and antimicrobial activity of the essential oils of Pinus peuce (Pinaceae) growing wild in R. Macedonia. Karapandzova M; Stefkova G; Cvetkovikj I; Trajkovska-Dokik E; Kaftandzieva A; Kulevanova S Nat Prod Commun; 2014 Nov; 9(11):1623-8. PubMed ID: 25532297 [TBL] [Abstract][Full Text] [Related]
18. Comparison of antimicrobial properties of monoterpenes and their carbonylated products. Naigre R; Kalck P; Roques C; Roux I; Michel G Planta Med; 1996 Jun; 62(3):275-7. PubMed ID: 8693045 [TBL] [Abstract][Full Text] [Related]
19. Monoterpene lactones from the seeds of Nephelium lappaceum. Ragasa CY; de Luna RD; Cruz WC; Rideout JA J Nat Prod; 2005 Sep; 68(9):1394-6. PubMed ID: 16180821 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic dehydrogenative Diels-Alder cycloadditions: total syntheses of brosimones A and B. Qi C; Cong H; Cahill KJ; Müller P; Johnson RP; Porco JA Angew Chem Int Ed Engl; 2013 Aug; 52(32):8345-8. PubMed ID: 23818217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]