These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 31967720)
1. Electrolyte Imbalance Determination of a Vanadium Redox Flow Battery by Potential-Step Analysis of the Initial Charging. Beyer K; Grosse Austing J; Satola B; Di Nardo T; Zobel M; Agert C ChemSusChem; 2020 Apr; 13(8):2066-2071. PubMed ID: 31967720 [TBL] [Abstract][Full Text] [Related]
2. Correlations of Through-Plane Cell Voltage Losses, Imbalance of Electrolytes, and Energy Storage Efficiency of a Vanadium Redox Flow Battery. Lim H; Yi JS; Lee D ChemSusChem; 2019 Apr; 12(7):1459-1468. PubMed ID: 30635977 [TBL] [Abstract][Full Text] [Related]
3. Capacity Decay Mitigation by Asymmetric Positive/Negative Electrolyte Volumes in Vanadium Redox Flow Batteries. Park JH; Park JJ; Park OO; Yang JH ChemSusChem; 2016 Nov; 9(22):3181-3187. PubMed ID: 27767257 [TBL] [Abstract][Full Text] [Related]
4. Enzyme-Inspired Formulation of the Electrolyte for Stable and Efficient Vanadium Redox Flow Batteries at High Temperatures. Abbas S; Hwang J; Kim H; Chae SA; Kim JW; Mehboob S; Ahn A; Han OH; Ha HY ACS Appl Mater Interfaces; 2019 Jul; 11(30):26842-26853. PubMed ID: 31268664 [TBL] [Abstract][Full Text] [Related]
5. Half-Cell State of Charge Monitoring for Determination of Crossover in VRFB-Considerations and Results Concerning Crossover Direction and Amount. Haisch T; Ji H; Holtz L; Struckmann T; Weidlich C Membranes (Basel); 2021 Mar; 11(4):. PubMed ID: 33805244 [TBL] [Abstract][Full Text] [Related]
6. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review. Skyllas-Kazacos M; Cao L; Kazacos M; Kausar N; Mousa A ChemSusChem; 2016 Jul; 9(13):1521-43. PubMed ID: 27295523 [TBL] [Abstract][Full Text] [Related]
7. Balancing Osmotic Pressure of Electrolytes for Nanoporous Membrane Vanadium Redox Flow Battery with a Draw Solute. Yan L; Li D; Li S; Xu Z; Dong J; Jing W; Xing W ACS Appl Mater Interfaces; 2016 Dec; 8(51):35289-35297. PubMed ID: 27966852 [TBL] [Abstract][Full Text] [Related]
8. A Flexible 5-In-1 Microsensor for Internal Microscopic Diagnosis of Vanadium Redox Flow Battery Charging Process. Lee CY; Hsieh CL; Chen CH; Huang YP; Jiang CA; Wu PC Sensors (Basel); 2019 Feb; 19(5):. PubMed ID: 30823434 [TBL] [Abstract][Full Text] [Related]
9. Development of economical and highly efficient electrolyte using vanadium pentoxide for vanadium redox flow battery. Beriwal N; Verma A Environ Sci Pollut Res Int; 2022 Oct; 29(48):72187-72195. PubMed ID: 35088278 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic Theoretical Investigation of Self-Discharge Reactions in a Vanadium Redox Flow Battery. Jiang Z; Klyukin K; Miller K; Alexandrov V J Phys Chem B; 2019 May; 123(18):3976-3983. PubMed ID: 30995047 [TBL] [Abstract][Full Text] [Related]
11. Capacity decay mechanism of microporous separator-based all-vanadium redox flow batteries and its recovery. Li B; Luo Q; Wei X; Nie Z; Thomsen E; Chen B; Sprenkle V; Wang W ChemSusChem; 2014 Feb; 7(2):577-84. PubMed ID: 24488680 [TBL] [Abstract][Full Text] [Related]
12. An Electrolyte with Elevated Average Valence for Suppressing the Capacity Decay of Vanadium Redox Flow Batteries. Wang Z; Guo Z; Ren J; Li Y; Liu B; Fan X; Zhao T ACS Cent Sci; 2023 Jan; 9(1):56-63. PubMed ID: 36712495 [TBL] [Abstract][Full Text] [Related]
13. On-Site Purification of Copper-Contaminated Vanadium Electrolytes by using a Vanadium Redox Flow Battery. Reynard D; Vrubel H; Dennison CR; Battistel A; Girault H ChemSusChem; 2019 Mar; 12(6):1222-1228. PubMed ID: 30609305 [TBL] [Abstract][Full Text] [Related]
14. Capacity decay and remediation of nafion-based all-vanadium redox flow batteries. Luo Q; Li L; Wang W; Nie Z; Wei X; Li B; Chen B; Yang Z; Sprenkle V ChemSusChem; 2013 Feb; 6(2):268-74. PubMed ID: 23208862 [TBL] [Abstract][Full Text] [Related]
15. Effect of Fe(III) on the positive electrolyte for vanadium redox flow battery. Ding M; Liu T; Zhang Y; Cai Z; Yang Y; Yuan Y R Soc Open Sci; 2019 Jan; 6(1):181309. PubMed ID: 30800377 [TBL] [Abstract][Full Text] [Related]
17. Current Distribution in the Discharge Unit of a 10-Cell Vanadium Redox Flow Battery: Comparison of the Computational Model with Experiment. Glazkov A; Pichugov R; Loktionov P; Konev D; Tolstel D; Petrov M; Antipov A; Vorotyntsev MA Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422159 [TBL] [Abstract][Full Text] [Related]
18. Determination of the through-plane profile of vanadium species in hydrated Nafion studied with micro X-ray absorption near-edge structure spectroscopy - proof of concept. Lutz C; Hampel S; Beuermann S; Turek T; Kunz U; Garrevoet J; Falkenberg G; Fittschen U J Synchrotron Radiat; 2021 Nov; 28(Pt 6):1865-1873. PubMed ID: 34738941 [TBL] [Abstract][Full Text] [Related]
19. An Ultra-Low Self-Discharge Aqueous|Organic Membraneless Battery with Minimized Br Yang H; Lin S; Qu Y; Wang G; Xiang S; Liu F; Wang C; Tang H; Wang D; Wang Z; Liu X; Zhang Y; Wu Y Adv Sci (Weinh); 2024 Feb; 11(7):e2307780. PubMed ID: 38168899 [TBL] [Abstract][Full Text] [Related]
20. Influence of Membrane Equivalent Weight and Reinforcement on Ionic Species Crossover in All-Vanadium Redox Flow Batteries. Ashraf Gandomi Y; Aaron DS; Mench MM Membranes (Basel); 2017 Jun; 7(2):. PubMed ID: 28587268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]