BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31967836)

  • 1. Mass Spectrometry-Based Identification of Phospho-Tyr in Plant Proteomics.
    Ahsan N; Wilson RS; Rao RSP; Salvato F; Sabila M; Ullah H; Miernyk JA
    J Proteome Res; 2020 Feb; 19(2):561-571. PubMed ID: 31967836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-phosphotyrosine proteome profiling by superbinder-SH2 domain affinity purification mass spectrometry, sSH2-AP-MS.
    Tong J; Cao B; Martyn GD; Krieger JR; Taylor P; Yates B; Sidhu SS; Li SS; Mao X; Moran MF
    Proteomics; 2017 Mar; 17(6):. PubMed ID: 27880036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted quantitative phosphoproteomics approach for the detection of phospho-tyrosine signaling in plants.
    Mithoe SC; Boersema PJ; Berke L; Snel B; Heck AJ; Menke FL
    J Proteome Res; 2012 Jan; 11(1):438-48. PubMed ID: 22074104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative phospho-proteomic profiling of hepatocyte growth factor (HGF)-MET signaling in colorectal cancer.
    Organ SL; Tong J; Taylor P; St-Germain JR; Navab R; Moran MF; Tsao MS
    J Proteome Res; 2011 Jul; 10(7):3200-11. PubMed ID: 21609022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Phosphotyrosine Signaling Networks in Lung Cancer Cell Lines.
    Broncel M; Huang PH
    Methods Mol Biol; 2017; 1636():253-262. PubMed ID: 28730484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The intrinsic substrate specificity of the human tyrosine kinome.
    Yaron-Barir TM; Joughin BA; Huntsman EM; Kerelsky A; Cizin DM; Cohen BM; Regev A; Song J; Vasan N; Lin TY; Orozco JM; Schoenherr C; Sagum C; Bedford MT; Wynn RM; Tso SC; Chuang DT; Li L; Li SS; Creixell P; Krismer K; Takegami M; Lee H; Zhang B; Lu J; Cossentino I; Landry SD; Uduman M; Blenis J; Elemento O; Frame MC; Hornbeck PV; Cantley LC; Turk BE; Yaffe MB; Johnson JL
    Nature; 2024 May; 629(8014):1174-1181. PubMed ID: 38720073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Phosphoproteomic Analysis Pipeline for Peels of Tropical Fruits.
    Juarez-Escobar J; Elizalde-Contreras JM; Loyola-Vargas VM; Ruiz-May E
    Methods Mol Biol; 2020; 2139():179-196. PubMed ID: 32462587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass spectrometry analysis of phosphotyrosine-containing proteins.
    Li J; Zhan X
    Mass Spectrom Rev; 2024; 43(4):857-887. PubMed ID: 36789499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Phosphotyrosine Proteomics by Optimization of Phosphotyrosine Enrichment and MS/MS Parameters.
    Abe Y; Nagano M; Tada A; Adachi J; Tomonaga T
    J Proteome Res; 2017 Feb; 16(2):1077-1086. PubMed ID: 28152594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoproteomics Analysis Identifies Novel Candidate Substrates of the Nonreceptor Tyrosine Kinase,
    Goel RK; Paczkowska M; Reimand J; Napper S; Lukong KE
    Mol Cell Proteomics; 2018 May; 17(5):925-947. PubMed ID: 29496907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finding the same needles in the haystack? A comparison of phosphotyrosine peptides enriched by immuno-affinity precipitation and metal-based affinity chromatography.
    Di Palma S; Zoumaro-Djayoon A; Peng M; Post H; Preisinger C; Munoz J; Heck AJ
    J Proteomics; 2013 Oct; 91():331-7. PubMed ID: 23917254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated analysis of proteome, phosphotyrosine-proteome, tyrosine-kinome, and tyrosine-phosphatome in acute myeloid leukemia.
    Tong J; Helmy M; Cavalli FM; Jin L; St-Germain J; Karisch R; Taylor P; Minden MD; Taylor MD; Neel BG; Bader GD; Moran MF
    Proteomics; 2017 Mar; 17(6):. PubMed ID: 28176486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Phospho- and Phosphotyrosine Proteomics Identified Active Kinases and Phosphorylation Networks in Colorectal Cancer Cell Lines Resistant to Cetuximab.
    Abe Y; Nagano M; Kuga T; Tada A; Isoyama J; Adachi J; Tomonaga T
    Sci Rep; 2017 Sep; 7(1):10463. PubMed ID: 28874695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics approaches to understand protein phosphorylation in pathway modulation.
    Schulze WX
    Curr Opin Plant Biol; 2010 Jun; 13(3):280-87. PubMed ID: 20097120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SH2 Domains as Affinity Reagents for Phosphotyrosine Protein Enrichment and Proteomic Analysis.
    Ke M; Chu B; Lin L; Tian R
    Methods Mol Biol; 2017; 1555():395-406. PubMed ID: 28092045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoproteomics perspective on plant signal transduction and tyrosine phosphorylation.
    Mithoe SC; Menke FL
    Phytochemistry; 2011 Jul; 72(10):997-1006. PubMed ID: 21315387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification-specific proteomics in plant biology.
    Ytterberg AJ; Jensen ON
    J Proteomics; 2010 Oct; 73(11):2249-66. PubMed ID: 20541636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of proteomic analyses to monitor the activity status of phosphorylation signaling.
    Nagano K; Shinkawa T; Yabuki N; Mutoh H; Inomata N; Watanabe Y; Ashihara M; Nagahashi S; Ishii N; Aoki Y; Haramura M
    J Proteomics; 2011 Mar; 74(3):319-26. PubMed ID: 21118733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling.
    Sharma K; D'Souza RC; Tyanova S; Schaab C; Wiśniewski JR; Cox J; Mann M
    Cell Rep; 2014 Sep; 8(5):1583-94. PubMed ID: 25159151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal processing by protein tyrosine phosphorylation in plants.
    Ghelis T
    Plant Signal Behav; 2011 Jul; 6(7):942-51. PubMed ID: 21628997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.