BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31967990)

  • 1. Tissue-guided LASSO for prediction of clinical drug response using preclinical samples.
    Huang EW; Bhope A; Lim J; Sinha S; Emad A
    PLoS Comput Biol; 2020 Jan; 16(1):e1007607. PubMed ID: 31967990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preclinical-to-clinical Anti-cancer Drug Response Prediction and Biomarker Identification Using TINDL.
    Hostallero DE; Wei L; Wang L; Cairns J; Emad A
    Genomics Proteomics Bioinformatics; 2023 Jun; 21(3):535-550. PubMed ID: 36775056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach.
    Emdadi A; Eslahchi C
    J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PANCDR: precise medicine prediction using an adversarial network for cancer drug response.
    Kim J; Park SH; Lee H
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38487849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles.
    Li X; Xu Y; Cui H; Huang T; Wang D; Lian B; Li W; Qin G; Chen L; Xie L
    Artif Intell Med; 2017 Nov; 83():35-43. PubMed ID: 28583437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WMMDCA: Prediction of Drug Responses by Weight-Based Modular Mapping in Cancer Cell Lines.
    Wang S; Li J; Wang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2733-2740. PubMed ID: 32142453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A gentle introduction to understanding preclinical data for cancer pharmaco-omic modeling.
    Piyawajanusorn C; Nguyen LC; Ghislat G; Ballester PJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature selection and survival modeling in The Cancer Genome Atlas.
    Kim H; Bredel M
    Int J Nanomedicine; 2013; 8 Suppl 1(Suppl 1):57-62. PubMed ID: 24098079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular within and between score for drug response prediction in cancer cell lines.
    Wang S; Li J
    Mol Omics; 2020 Feb; 16(1):31-38. PubMed ID: 31802092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning.
    Li Y; Guo Z; Gao X; Wang G
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the limitation of targeted therapy: Improve the application of targeted drugs combining genomic data with machine learning.
    Miao R; Chen HH; Dang Q; Xia LY; Yang ZY; He MF; Hao ZF; Liang Y
    Pharmacol Res; 2020 Sep; 159():104932. PubMed ID: 32473309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas.
    van IJzendoorn DGP; Szuhai K; Briaire-de Bruijn IH; Kostine M; Kuijjer ML; Bovée JVMG
    PLoS Comput Biol; 2019 Feb; 15(2):e1006826. PubMed ID: 30785874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for predicting target drug efficiency in cancer based on the analysis of signaling pathway activation.
    Artemov A; Aliper A; Korzinkin M; Lezhnina K; Jellen L; Zhukov N; Roumiantsev S; Gaifullin N; Zhavoronkov A; Borisov N; Buzdin A
    Oncotarget; 2015 Oct; 6(30):29347-56. PubMed ID: 26320181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multitask learning improves prediction of cancer drug sensitivity.
    Yuan H; Paskov I; Paskov H; González AJ; Leslie CS
    Sci Rep; 2016 Aug; 6():31619. PubMed ID: 27550087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy.
    Huang C; Clayton EA; Matyunina LV; McDonald LD; Benigno BB; Vannberg F; McDonald JF
    Sci Rep; 2018 Nov; 8(1):16444. PubMed ID: 30401894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug Response Prediction by Globally Capturing Drug and Cell Line Information in a Heterogeneous Network.
    Le DH; Pham VH
    J Mol Biol; 2018 Sep; 430(18 Pt A):2993-3004. PubMed ID: 29966608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.