These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31968000)

  • 1. Copper to Tuscany - Coals to Newcastle? The dynamics of metalwork exchange in early Italy.
    Dolfini A; Angelini I; Artioli G
    PLoS One; 2020; 15(1):e0227259. PubMed ID: 31968000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of monopoly-Copper exchange networks during the Late Bronze Age in the western and central Balkans.
    Gavranović M; Mehofer M; Kapuran A; Koledin J; Mitrović J; Papazovska A; Pravidur A; Đorđević A; Jacanović D
    PLoS One; 2022; 17(3):e0263823. PubMed ID: 35275905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead isotopes of prehistoric copper tools define metallurgical phases in Late Neolithic and Eneolithic Italy.
    Artioli G; Angelini I; Canovaro C; Kaufmann G; Villa IM
    Sci Rep; 2024 Feb; 14(1):4323. PubMed ID: 38383590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melting, smelting, and recycling: A regional study around the Late Bronze Age mining site of Prigglitz-Gasteil, Lower Austria.
    Mödlinger M; Trebsche P; Sabatini B
    PLoS One; 2021; 16(7):e0254096. PubMed ID: 34270592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The beginning of metallurgy in the southern Levant: a late 6th millennium CalBC copper awl from Tel Tsaf, Israel.
    Garfinkel Y; Klimscha F; Shalev S; Rosenberg D
    PLoS One; 2014; 9(3):e92591. PubMed ID: 24671185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origin of Neolithic copper on the central Northern European plain and in Southern Scandinavia: Connectivities on a European scale.
    Brozio JP; Stos-Gale Z; Müller J; Müller-Scheeßel N; Schultrich S; Fritsch B; Jürgens F; Skorna H
    PLoS One; 2023; 18(5):e0283007. PubMed ID: 37163484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-distance connections in the Copper Age: New evidence from the Alpine Iceman's copper axe.
    Artioli G; Angelini I; Kaufmann G; Canovaro C; Dal Sasso G; Villa IM
    PLoS One; 2017; 12(7):e0179263. PubMed ID: 28678801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why did the use of antimony-bearing alloys in Bronze Age Anatolia fall dormant after the Early Bronze Age?: A Case from Resuloğlu (Çorum, Turkey).
    Dardeniz G
    PLoS One; 2020; 15(7):e0234563. PubMed ID: 32673336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A millennium of metallurgy recorded by lake sediments from Morococha, Peruvian Andes.
    Cooke CA; Abbott MB; Wolfe AP; Kittleson JL
    Environ Sci Technol; 2007 May; 41(10):3469-74. PubMed ID: 17547165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible toxic metal exposure of prehistoric bronze workers.
    Harper M
    Br J Ind Med; 1987 Oct; 44(10):652-6. PubMed ID: 3314977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The exceptional abandonment of metal tools by North American hunter-gatherers, 3000 B.P.
    Bebber MR; Key AJM; Fisch M; Meindl RS; Eren MI
    Sci Rep; 2019 Apr; 9(1):5756. PubMed ID: 30962475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmium isotope analysis as an innovative tool for provenancing ancient iron: A systematic approach.
    Brauns M; Yahalom-Mack N; Stepanov I; Sauder L; Keen J; Eliyahu-Behar A
    PLoS One; 2020; 15(3):e0229623. PubMed ID: 32187196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The heavy metal content of skeletons from an ancient metalliferous polluted area in southern Jordan with particular reference to bioaccumulation and human health.
    Pyatt FB; Pyatt AJ; Walker C; Sheen T; Grattan JP
    Ecotoxicol Environ Saf; 2005 Mar; 60(3):295-300. PubMed ID: 15590007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interwoven traditions in Bell Beaker metallurgy: Approaching the social value of copper at Bauma del Serrat del Pont (Northeast Iberia).
    Montes-Landa J; Murillo-Barroso M; Montero-Ruiz I; Rovira-Llorens S; Martinón-Torres M
    PLoS One; 2021; 16(8):e0255818. PubMed ID: 34370768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental legacy of copper metallurgy and Mongol silver smelting recorded in Yunnan Lake sediments.
    Hillman AL; Abbott MB; Yu J; Bain DJ; Chiou-Peng T
    Environ Sci Technol; 2015 Mar; 49(6):3349-57. PubMed ID: 25685905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widespread waterborne pollution in central Swedish lakes and the Baltic Sea from pre-industrial mining and metallurgy.
    Bindler R; Renberg I; Rydberg J; Andrén T
    Environ Pollut; 2009 Jul; 157(7):2132-41. PubMed ID: 19268409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of arsenic pollution in Southwest Tuscany: comparison of fluvial sediments.
    Donati A; Pulselli FM; Riccobono F; Dallai L; Francovich R; Tiezzi E
    Ann Chim; 2005; 95(3-4):161-6. PubMed ID: 16485657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 'Death ... more desirable than life'? The human skeletal record and toxicological implications of ancient copper mining and smelting in Wadi Faynan, southwestern Jordan.
    Grattan J; Huxley S; Abu Karaki L; Toland H; Gilbertson D; Pyatt B; al Saad Z
    Toxicol Ind Health; 2002 Jul; 18(6):297-307. PubMed ID: 14992467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the trail of Scandinavia's early metallurgy: Provenance, transfer and mixing.
    Nørgaard HW; Pernicka E; Vandkilde H
    PLoS One; 2019; 14(7):e0219574. PubMed ID: 31339904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Record of metal workshops in peat deposits: history and environmental impact on the Mont Lozère Massif, France.
    Baron S; Lavoie M; Ploquin A; Carignan J; Pulido M; De Beaulieu JL
    Environ Sci Technol; 2005 Jul; 39(14):5131-40. PubMed ID: 16082940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.