BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31968154)

  • 1. Molecular Design Strategy for High-Redox-Potential and Poorly Soluble n-Type Phenazine Derivatives as Cathode Materials for Lithium Batteries.
    Miao L; Liu L; Zhang K; Chen J
    ChemSusChem; 2020 May; 13(9):2337-2344. PubMed ID: 31968154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Li-Binding Thermodynamics and Redox Properties of BNOPS-Based Organic Compounds for Cathodes in Lithium-Ion Batteries.
    Lee DK; Go CY; Kim KC
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31972-31979. PubMed ID: 31393115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. s-Tetrazines as a New Electrode-Active Material for Secondary Batteries.
    Min DJ; Miomandre F; Audebert P; Kwon JE; Park SY
    ChemSusChem; 2019 Jan; 12(2):503-510. PubMed ID: 30338641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rechargeable Aqueous Aluminum Organic Batteries.
    Chen J; Zhu Q; Jiang L; Liu R; Yang Y; Tang M; Wang J; Wang H; Guo L
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5794-5799. PubMed ID: 33314518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Electron Redox Enabled Dithiocarboxylate Electrode for Superior Lithium Storage Performance.
    Wang J; Zhao H; Xu L; Yang Y; He G; Du Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35469-35476. PubMed ID: 30252431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Organic Molecular Cathode Composed of Naphthoquinones Bridged by Organodisulfide for Rechargeable Lithium Battery.
    Yu P; An J; Wang Z; Fu Y; Guo W
    Small; 2024 Apr; 20(14):e2308881. PubMed ID: 37984861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organic Cathode with Dual-Type Multielectron Reaction Centers for High-Energy-Density Lithium Primary Batteries.
    Xun H; Chen Z; Liu Y; Su H; Yang J; Liu Y; Xu Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(24):29064-29071. PubMed ID: 37293868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights on Redox Properties of Sumanene Derivatives for High-Performance Organic Cathodes.
    Jung KH; Kim KC
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8333-8341. PubMed ID: 31977171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Design of Phenanthrenequinone Derivatives as Organic Cathode Materials.
    Zhao LB; Gao ST; He R; Shen W; Li M
    ChemSusChem; 2018 Apr; 11(7):1215-1222. PubMed ID: 29380541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the redox chemistry of anthraquinone derivatives using density functional theory.
    Bachman JE; Curtiss LA; Assary RS
    J Phys Chem A; 2014 Sep; 118(38):8852-60. PubMed ID: 25159500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in cathode materials for rechargeable lithium-sulfur batteries.
    Li F; Liu Q; Hu J; Feng Y; He P; Ma J
    Nanoscale; 2019 Sep; 11(33):15418-15439. PubMed ID: 31408082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic Molecular Design of Ketone Derivatives of Aromatic Molecules for Lithium-Ion Batteries: First-Principles DFT Modeling.
    Park JH; Liu T; Kim KC; Lee SW; Jang SS
    ChemSusChem; 2017 Apr; 10(7):1584-1591. PubMed ID: 28199064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact coupled graphene and porous polyaryltriazine-derived frameworks as high performance cathodes for lithium-ion batteries.
    Su Y; Liu Y; Liu P; Wu D; Zhuang X; Zhang F; Feng X
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1812-6. PubMed ID: 25515597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Molecular Design of Redox-Active Carbonyl-Bridged Heterotriangulenes for High-Performance Lithium-Ion Batteries.
    Shu X; Hu L; Heine T; Jing Y
    Adv Sci (Weinh); 2024 Feb; 11(6):e2306680. PubMed ID: 38044304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Density Functional Theory Modeling of Li Binding: Thermodynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries.
    Kim KC; Liu T; Lee SW; Jang SS
    J Am Chem Soc; 2016 Feb; 138(7):2374-82. PubMed ID: 26824616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.