These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31968159)

  • 1. Phenanthroline-Based Polyarylate Porous Membranes with Rapid Water Transport for Metal Cation Separation.
    Ren D; Jin YT; Liu TY; Wang X
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7605-7616. PubMed ID: 31968159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer nanofilms with enhanced microporosity by interfacial polymerization.
    Jimenez-Solomon MF; Song Q; Jelfs KE; Munoz-Ibanez M; Livingston AG
    Nat Mater; 2016 Jul; 15(7):760-7. PubMed ID: 27135857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water Transport through Ultrathin Polyamide Nanofilms Used for Reverse Osmosis.
    Jiang Z; Karan S; Livingston AG
    Adv Mater; 2018 Apr; 30(15):e1705973. PubMed ID: 29484724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perm-selective ultrathin high flux microporous polyaryl nanofilm for molecular separation.
    Kaushik A; Dhundhiyawala M; Dobariya P; Marvaniya K; Kushwaha S; Patel K
    iScience; 2022 Jun; 25(6):104441. PubMed ID: 35677642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial synthesis of large-area ultrathin polyimine nanofilms as molecular separation membrane.
    Tiwari K; Modak S; Sarkar P; Ray S; Adupa V; Reddy KA; Pramanik SK; Das A; Karan S
    iScience; 2022 Apr; 25(4):104027. PubMed ID: 35313692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2,2'-Biphenol-based Ultrathin Microporous Nanofilms for Highly Efficient Molecular Sieving Separation.
    Li SL; Chang G; Huang Y; Kinooka K; Chen Y; Fu W; Gong G; Yoshioka T; McKeown NB; Hu Y
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202212816. PubMed ID: 36148532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling Anomalies in Preferential Liquid Transport through the Intrinsic Pores of Cyclodextrin in Polyester Nanofilms.
    Puhan MR; Sarkar P; R A; Nagendraprasad G; Reddy KA; Sutariya B; Karan S
    Adv Mater; 2024 Sep; 36(36):e2404164. PubMed ID: 39091057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Organic Framework Nanocomposite Thin Films with Interfacial Bindings and Self-Standing Robustness for High Water Flux and Enhanced Ion Selectivity.
    Liu TY; Yuan HG; Liu YY; Ren D; Su YC; Wang X
    ACS Nano; 2018 Sep; 12(9):9253-9265. PubMed ID: 30153418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption-Assisted Interfacial Polymerization toward Ultrathin Active Layers for Ultrafast Organic Permeation.
    Wu X; Li Y; Cui X; Wang J; Cao X; Zhang P; Zheng L
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10445-10453. PubMed ID: 29516717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients.
    Yip NY; Tiraferri A; Phillip WA; Schiffman JD; Hoover LA; Kim YC; Elimelech M
    Environ Sci Technol; 2011 May; 45(10):4360-9. PubMed ID: 21491936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformationally tunable calix[4]pyrrole-based nanofilms for efficient molecular separation.
    Liu X; Tang J; Yang J; Zhang H; Fang Y
    J Colloid Interface Sci; 2022 Mar; 610():368-375. PubMed ID: 34923274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin Polyamide Nanofilms with Controlled Microporosity for Enhanced Solvent Permeation.
    Guo H; Li F; Shui X; Wang J; Fang C; Zhu L
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):37077-37085. PubMed ID: 37479673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous Zr-Based Metal-Organic Frameworks (Zr-MOFs)-Incorporated Thin-Film Nanocomposite Membrane toward Enhanced Desalination Performance.
    Xiao F; Hu X; Chen Y; Zhang Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47390-47403. PubMed ID: 31729858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly permeable double-skinned forward osmosis membranes for anti-fouling in the emulsified oil-water separation process.
    Duong PH; Chung TS; Wei S; Irish L
    Environ Sci Technol; 2014 Apr; 48(8):4537-45. PubMed ID: 24621207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Polymerization of Zwitterionic Building Blocks for High-Flux Nanofiltration Membranes.
    Duong PHH; Daumann K; Hong PY; Ulbricht M; Nunes SP
    Langmuir; 2019 Feb; 35(5):1284-1293. PubMed ID: 29983069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling Covalent Organic Framework Nanofilms for Molecular Separation: Perforated Polymer-Assisted Transfer.
    Xiao A; Zhang Z; Shi X; Wang Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44783-44791. PubMed ID: 31689069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation.
    Zhao C; Zhang Y; Jia Y; Li B; Tang W; Shang C; Mo R; Li P; Liu S; Zhang S
    Nat Commun; 2023 Feb; 14(1):1112. PubMed ID: 36849434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bendable and Chemically Stable Metal-Organic Hybrid Membranes for Molecular Separation.
    Wang Z; Liu Y; Wang L; Zha S; Zhang S; Jin J
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):17016-17024. PubMed ID: 38514388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric polyamide nanofilms with highly ordered nanovoids for water purification.
    Yuan B; Zhao S; Hu P; Cui J; Niu QJ
    Nat Commun; 2020 Nov; 11(1):6102. PubMed ID: 33257695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Codeposition Modification of Cation Exchange Membranes with Dopamine and Crown Ether To Achieve High K
    Yang S; Liu Y; Liao J; Liu H; Jiang Y; Van der Bruggen B; Shen J; Gao C
    ACS Appl Mater Interfaces; 2019 May; 11(19):17730-17741. PubMed ID: 31013045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.