These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 3196822)

  • 1. A new analysis method for the membrane viscosity from steady-state fluorescence depolarization.
    Araiso T; Koyama T
    Biorheology; 1988; 25(1-2):253-9. PubMed ID: 3196822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscosity and order in erythrocyte membranes studied with nanosecond fluorometry.
    Araiso T; Shindo Y; Arai T; Nitta J; Kikuchi Y; Kakiuchi Y; Koyama T
    Biorheology; 1986; 23(5):467-83. PubMed ID: 3115330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular order and fluidity of the plasma membrane of human platelets from time-resolved fluorescence depolarization.
    Mateo CR; Lillo MP; González-Rodríguez J; Acuña AU
    Eur Biophys J; 1991; 20(1):41-52. PubMed ID: 1935812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamics of lipid motion in sarcoplasmic reticulum membranes determined by steady-state and time-resolved fluorescence measurements on 1,6-diphenyl-1,3,5-hexatriene and related molecules.
    Stubbs CD; Kinosita K; Munkonge F; Quinn PJ; Ikegami A
    Biochim Biophys Acta; 1984 Sep; 775(3):374-80. PubMed ID: 6466678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence depolarization method in the study of dynamic properties of blood cells.
    Donner M; Muller S; Stoltz JF
    Biorheology; 1990; 27(3-4):367-74. PubMed ID: 2261503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis for the molecular motion of phospholipid bilayer with picosecond fluorometry.
    Araiso T; Saito H; Shirahama H; Koyama T
    Biorheology; 1990; 27(3-4):375-87. PubMed ID: 2261504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erythrocyte membrane microviscosity and blood pressure in rats with salt-induced and spontaneous hypertension.
    Kunes J; Zicha J; Devynck MA
    J Hypertens; 1994 Mar; 12(3):229-34. PubMed ID: 8021475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic structure of biological membranes as probed by 1,6-diphenyl-1,3,5-hexatriene: a nanosecond fluorescence depolarization study.
    Kinosita K; Kataoka R; Kimura Y; Gotoh O; Ikegami A
    Biochemistry; 1981 Jul; 20(15):4270-7. PubMed ID: 7284326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluidity of intact erythrocyte membranes. Correction for fluorescence energy transfer from diphenylhexatriene to hemoglobin.
    Plásek J; Cermáková D; Jarolím P
    Biochim Biophys Acta; 1988 Jun; 941(2):119-22. PubMed ID: 3382643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic microstructure of plasma and mitochondrial membranes from bullfrog myocardium--a nanosecond time-resolved fluorometric study.
    Koyama T; Zhu MY; Araiso T; Kinjo M; Kitagawa H; Sugimura M
    Jpn J Physiol; 1990; 40(1):65-78. PubMed ID: 2141883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in erythrocyte membrane fluidity in children with trisomy 21: a fluorescence study.
    Kantar A; Giorgi PL; Curatola G; Fiorini R
    Biol Cell; 1992; 75(2):135-8. PubMed ID: 1393150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of the DPH fluorescence probe in membranes perturbed by drugs.
    Poojari C; Wilkosz N; Lira RB; Dimova R; Jurkiewicz P; Petka R; Kepczynski M; Róg T
    Chem Phys Lipids; 2019 Sep; 223():104784. PubMed ID: 31199906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aging of the erythrocyte. IX. Fluorescence studies on changes in membrane properties.
    Bartosz G; Szabo G; Szöllösi J; Szöllösi J; Damjanovich S
    Mech Ageing Dev; 1981 Jul; 16(3):265-74. PubMed ID: 7278396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fluorescence anisotropy--a parameter for characterizing membrane fluidity].
    Miron S; Rusu V
    Rev Med Chir Soc Med Nat Iasi; 1995; 99(3-4):115-20. PubMed ID: 9455356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum-altered membrane dynamics in human red blood cell white ghosts.
    Weis C; Haug A
    Thromb Res; 1989 Apr; 54(2):141-9. PubMed ID: 2749608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of HPE-101, a skin penetration enhancer, on human erythrocyte membranes.
    Lee KJ; Hwang SJ; Kim JS; Kim DD; Shin YH; Lee CH
    Int J Pharm; 2004 Nov; 285(1-2):43-9. PubMed ID: 15488678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene with biomembranes.
    Plásek J; Jarolím P
    Gen Physiol Biophys; 1987 Oct; 6(5):425-37. PubMed ID: 3428564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A time-resolved fluorescence anisotropy study of bilayer membranes containing alpha-tocopherol.
    Bisby RH; Birch DJ
    Biochem Biophys Res Commun; 1989 Jan; 158(2):386-91. PubMed ID: 2916987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol's fluidizing effects on RBC membranes from children at risk for alcoholism.
    Hill SY; Zubenko GS; Gronlund S; Teply I
    Alcohol; 1991; 8(5):405-7. PubMed ID: 1797036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of two fluorescent probes for the measurement of erythrocyte membrane fluidity in renal dialysis patients.
    McClean E; McGrath LT; Archbold GP
    Ir J Med Sci; 1995; 164(4):289-92. PubMed ID: 8522433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.