BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 31968228)

  • 1. The Spatial Origins of Cochlear Amplification Assessed by Stimulus-Frequency Otoacoustic Emissions.
    Goodman SS; Lee C; Guinan JJ; Lichtenhan JT
    Biophys J; 2020 Mar; 118(5):1183-1195. PubMed ID: 31968228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulus Frequency Otoacoustic Emission Delays and Generating Mechanisms in Guinea Pigs, Chinchillas, and Simulations.
    Berezina-Greene MA; Guinan JJ
    J Assoc Res Otolaryngol; 2015 Dec; 16(6):679-94. PubMed ID: 26373935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically Evoked Medial Olivocochlear Efferent Effects on Stimulus Frequency Otoacoustic Emissions in Guinea Pigs.
    Berezina-Greene MA; Guinan JJ
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):153-163. PubMed ID: 27798720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of low-frequency biasing on otoacoustic and neural measures suggest that stimulus-frequency otoacoustic emissions originate near the peak region of the traveling wave.
    Lichtenhan JT
    J Assoc Res Otolaryngol; 2012 Feb; 13(1):17-28. PubMed ID: 22002610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing coherent reflection in chinchilla: Auditory-nerve responses predict stimulus-frequency emissions.
    Shera CA; Tubis A; Talmadge CL
    J Acoust Soc Am; 2008 Jul; 124(1):381-95. PubMed ID: 18646984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear reflection as a cause of the short-latency component in stimulus-frequency otoacoustic emissions simulated by the methods of compression and suppression.
    Vencovský V; Vetešník A; Gummer AW
    J Acoust Soc Am; 2020 Jun; 147(6):3992. PubMed ID: 32611132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering.
    Siegel JH; Cerka AJ; Recio-Spinoso A; Temchin AN; van Dijk P; Ruggero MA
    J Acoust Soc Am; 2005 Oct; 118(4):2434-43. PubMed ID: 16266165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Otoacoustic estimation of cochlear tuning: validation in the chinchilla.
    Shera CA; Guinan JJ; Oxenham AJ
    J Assoc Res Otolaryngol; 2010 Sep; 11(3):343-65. PubMed ID: 20440634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion.
    Nam H; Guinan JJ
    Hear Res; 2018 Feb; 358():1-9. PubMed ID: 29276975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.
    Dewey JB; Dhar S
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):89-110. PubMed ID: 27681700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cochlear compound action potentials from high-level tone bursts originate from wide cochlear regions that are offset toward the most sensitive cochlear region.
    Lee C; Guinan JJ; Rutherford MA; Kaf WA; Kennedy KM; Buchman CA; Salt AN; Lichtenhan JT
    J Neurophysiol; 2019 Mar; 121(3):1018-1033. PubMed ID: 30673362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 2003 May; 113(5):2762-72. PubMed ID: 12765394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning of SFOAEs Evoked by Low-Frequency Tones Is Not Compatible with Localized Emission Generation.
    Charaziak KK; Siegel JH
    J Assoc Res Otolaryngol; 2015 Jun; 16(3):317-29. PubMed ID: 25813430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces.
    Dewey JB; Applegate BE; Oghalai JS
    J Neurosci; 2019 Mar; 39(10):1805-1816. PubMed ID: 30651330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas.
    Charaziak KK; Siegel JH
    J Assoc Res Otolaryngol; 2014 Dec; 15(6):883-96. PubMed ID: 25230801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin of SFOAE microstructure in the guinea pig.
    Goodman SS; Withnell RH; Shera CA
    Hear Res; 2003 Sep; 183(1-2):7-17. PubMed ID: 13679133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical tuning and amplification within the apex of the guinea pig cochlea.
    Recio-Spinoso A; Oghalai JS
    J Physiol; 2017 Jul; 595(13):4549-4561. PubMed ID: 28382742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Otoacoustic emissions from the cochlea of the 'constant frequency' bats, Pteronotus parnellii and Rhinolophus rouxi.
    Kössl M
    Hear Res; 1994 Jan; 72(1-2):59-72. PubMed ID: 8150746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflection- and Distortion-Source Otoacoustic Emissions: Evidence for Increased Irregularity in the Human Cochlea During Aging.
    Abdala C; Ortmann AJ; Shera CA
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):493-510. PubMed ID: 29968098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.