These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 31968228)

  • 21. Reflection- and Distortion-Source Otoacoustic Emissions: Evidence for Increased Irregularity in the Human Cochlea During Aging.
    Abdala C; Ortmann AJ; Shera CA
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):493-510. PubMed ID: 29968098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring the Influence of Extended High-Frequency Hearing on Cochlear Functioning at Lower Frequencies.
    Mishra SK; Rodrigo H; Balan JR
    J Speech Lang Hear Res; 2024 Jul; 67(7):2473-2482. PubMed ID: 38820241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Swept-Tone Stimulus-Frequency Otoacoustic Emissions in Human Newborns.
    Abdala C; Luo P; Guardia Y
    Trends Hear; 2019; 23():2331216519889226. PubMed ID: 31789131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of contralateral acoustic stimulation on otoacoustic emissions induced by swept tones.
    Shixiong Chen ; Yanbing Jin ; Lisheng Xu ; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2733-6. PubMed ID: 26736857
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression of stimulus frequency otoacoustic emissions.
    Brass D; Kemp DT
    J Acoust Soc Am; 1993 Feb; 93(2):920-39. PubMed ID: 8445127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Link between stimulus otoacoustic emissions fine structure peaks and standing wave resonances in a cochlear model.
    Wen H; Meaud J
    J Acoust Soc Am; 2022 Mar; 151(3):1875. PubMed ID: 35364913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Swept-tone stimulus-frequency otoacoustic emissions: Normative data and methodological considerations.
    Abdala C; Guardia YC; Shera CA
    J Acoust Soc Am; 2018 Jan; 143(1):181. PubMed ID: 29390734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship Between Behavioral and Stimulus Frequency Otoacoustic Emissions Delay-Based Tuning Estimates.
    Wilson US; Browning-Kamins J; Boothalingam S; Moleti A; Sisto R; Dhar S
    J Speech Lang Hear Res; 2020 Jun; 63(6):1958-1968. PubMed ID: 32464079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suppression of stimulus frequency otoacoustic emissions by contralateral noise.
    Souter M
    Hear Res; 1995 Nov; 91(1-2):167-77. PubMed ID: 8647718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears.
    Schairer KS; Ellison JC; Fitzpatrick D; Keefe DH
    J Acoust Soc Am; 2006 Aug; 120(2):901-14. PubMed ID: 16938978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions.
    Nuttall AL; Ren T
    Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-tone suppression of stimulus frequency otoacoustic emissions.
    Keefe DH; Ellison JC; Fitzpatrick DF; Gorga MP
    J Acoust Soc Am; 2008 Mar; 123(3):1479-94. PubMed ID: 18345837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Otoacoustic emissions reveal the micromechanical role of organ-of-Corti cytoarchitecture in cochlear amplification.
    Shera CA; Altoè A
    Proc Natl Acad Sci U S A; 2023 Oct; 120(41):e2305921120. PubMed ID: 37796989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrically evoked otoacoustic emissions from apical and basal perilymphatic electrode positions in the guinea pig cochlea.
    Nuttall AL; Zheng J; Ren T; de Boer E
    Hear Res; 2001 Feb; 152(1-2):77-89. PubMed ID: 11223283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing cochlear tuning and tonotopy in the tiger using otoacoustic emissions.
    Bergevin C; Walsh EJ; McGee J; Shera CA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Aug; 198(8):617-24. PubMed ID: 22645048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults.
    Abdala C; Luo P; Shera CA
    J Assoc Res Otolaryngol; 2022 Oct; 23(5):647-664. PubMed ID: 35804277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):782-98. PubMed ID: 9972564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of OAEs arising from different generation mechanisms in guinea pig.
    Withnell RH; Dhar S; Thomsen A
    Hear Res; 2005 Sep; 207(1-2):76-86. PubMed ID: 15935577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The origin of periodicity in the spectrum of evoked otoacoustic emissions.
    Zweig G; Shera CA
    J Acoust Soc Am; 1995 Oct; 98(4):2018-47. PubMed ID: 7593924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonlinear input-output functions derived from the responses of guinea-pig cochlear nerve fibres: variations with characteristic frequency.
    Cooper NP; Yates GK
    Hear Res; 1994 Aug; 78(2):221-34. PubMed ID: 7982815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.