BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31968306)

  • 1. Effect of Mechanically Passive, Wearable Shoulder Exoskeletons on Muscle Output During Dynamic Upper Extremity Movements: A Computational Simulation Study.
    Nelson AJ; Hall PT; Saul KR; Crouch DL
    J Appl Biomech; 2020 Apr; 36(2):59-67. PubMed ID: 31968306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Preliminary Evaluation of a Wearable Passive Cam-Based Shoulder Exoskeleton.
    Asgari M; Phillips EA; Dalton BM; Rudl JL; Crouch DL
    J Biomech Eng; 2022 Nov; 144(11):. PubMed ID: 35599348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable Shoulder Exoskeleton with Spring-Cam Mechanism for Customizable, Nonlinear Gravity Compensation.
    Asgari M; Hall PT; Moore BS; Crouch DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4926-4929. PubMed ID: 33019093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of continuous, mechanically passive, anti-gravity assistance on kinematics and muscle activity during dynamic shoulder elevation.
    Hall PT; Crouch DL
    J Biomech; 2020 Apr; 103():109685. PubMed ID: 32139094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Exo4Work shoulder exoskeleton effectively reduces muscle and joint loading during simulated occupational tasks above shoulder height.
    van der Have A; Rossini M; Rodriguez-Guerrero C; Van Rossom S; Jonkers I
    Appl Ergon; 2022 Sep; 103():103800. PubMed ID: 35598416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of passive exoskeleton support on EMG measures of the neck, shoulder and trunk muscles while holding simulated surgical postures and performing a simulated surgical procedure.
    Tetteh E; Hallbeck MS; Mirka GA
    Appl Ergon; 2022 Apr; 100():103646. PubMed ID: 34847371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of antigravitational support levels provided by a passive upper-limb occupational exoskeleton in repetitive arm movements.
    Ramella G; Grazi L; Giovacchini F; Trigili E; Vitiello N; Crea S
    Appl Ergon; 2024 May; 117():104226. PubMed ID: 38219374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A passive upper-limb exoskeleton reduced muscular loading during augmented reality interactions.
    Kong YK; Park SS; Shim JW; Choi KH; Shim HH; Kia K; Kim JH
    Appl Ergon; 2023 May; 109():103982. PubMed ID: 36739780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of passive shoulder exoskeleton support during working with arms over shoulder level.
    Brunner A; van Sluijs R; Luder T; Camichel C; Kos M; Bee D; Bartenbach V; Lambercy O
    Wearable Technol; 2023; 4():e26. PubMed ID: 38510589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of an exoskeleton on muscle activity in tasks requiring arm elevation: Part I - Experiments in a controlled laboratory setting.
    Mänttäri S; Rauttola AP; Halonen J; Karkulehto J; Säynäjäkangas P; Oksa J
    Work; 2024; 77(4):1179-1188. PubMed ID: 37980590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Passive Shoulder Exoskeleton Using Link Chains and Magnetic Spring Joints.
    Lee HH; Yoon KT; Lim HH; Lee WK; Jung JH; Kim SB; Choi YM
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():708-717. PubMed ID: 38285587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical changes, acceptance, and usability of a passive shoulder exoskeleton in manual material handling. A field study.
    Schrøder Jakobsen L; de Zee M; Samani A; Desbrosses K; Madeleine P
    Appl Ergon; 2023 Nov; 113():104104. PubMed ID: 37531933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Level of exoskeleton support influences shoulder elevation, external rotation and forearm pronation during simulated work tasks in females.
    McFarland TC; McDonald AC; Whittaker RL; Callaghan JP; Dickerson CR
    Appl Ergon; 2022 Jan; 98():103591. PubMed ID: 34628044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches.
    Smith AJJ; Fournier BN; Nantel J; Lemaire ED
    J Biomech; 2020 Jun; 107():109835. PubMed ID: 32517865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effectivity of a passive arm support exoskeleton in reducing muscle activation and perceived exertion during plastering activities.
    de Vries AW; Krause F; de Looze MP
    Ergonomics; 2021 Jun; 64(6):712-721. PubMed ID: 33402050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of passive back-support exoskeletons on physical demands and usability during patient transfer tasks.
    Hwang J; Kumar Yerriboina VN; Ari H; Kim JH
    Appl Ergon; 2021 May; 93():103373. PubMed ID: 33516046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Upper Limb Muscle Activation Using Musculoskeletal Model with Wearable Assistive Device.
    Ashari MF; Hanafusa A; Mohamaddan S
    Appl Bionics Biomech; 2022; 2022():8908061. PubMed ID: 35847624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A physiological and biomechanical investigation of three passive upper-extremity exoskeletons during simulated overhead work.
    Weston EB; Alizadeh M; Hani H; Knapik GG; Souchereau RA; Marras WS
    Ergonomics; 2022 Jan; 65(1):105-117. PubMed ID: 34338595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.