These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 31968311)

  • 1. Band unfolding made simple.
    Mayo SG; Yndurain F; Soler JM
    J Phys Condens Matter; 2020 May; 32(20):205902. PubMed ID: 31968311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic State Unfolding for Plane Waves: Energy Bands, Fermi Surfaces, and Spectral Functions.
    Dirnberger D; Kresse G; Franchini C; Reticcioli M
    J Phys Chem C Nanomater Interfaces; 2021 Jun; 125(23):12921-12928. PubMed ID: 34276866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cu-Doped KCl Unfolded Band Structure and Optical Properties Studied by DFT Calculations.
    Castillo-Quevedo C; Cabellos JL; Aceves R; Núñez-González R; Posada-Amarillas A
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32993129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unfolding the band structure of GaAsBi.
    Maspero R; Sweeney SJ; Florescu M
    J Phys Condens Matter; 2017 Feb; 29(7):075001. PubMed ID: 28008883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degeneracy analysis for a supercell of a photonic crystal and its application to the creation of band gaps.
    Wu L; Zhuang F; He S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026612. PubMed ID: 12636846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Basics of Electronic Structure Theory for Periodic Systems.
    Kratzer P; Neugebauer J
    Front Chem; 2019; 7():106. PubMed ID: 30918889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brillouin zone unfolding of complex bands in a nearest neighbour tight binding scheme.
    Ajoy A; Murali KV; Karmalkar S
    J Phys Condens Matter; 2012 Feb; 24(5):055504. PubMed ID: 22251658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing the influence of point defects on the electronic band structure of graphene.
    Farjam M
    J Phys Condens Matter; 2014 Apr; 26(15):155502. PubMed ID: 24675693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unfolding first-principles band structures.
    Ku W; Berlijn T; Lee CC
    Phys Rev Lett; 2010 May; 104(21):216401. PubMed ID: 20867120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realization of intrinsically broken Dirac cones in graphene via the momentum-resolved electronic band structure.
    Lee CC; Fukuda M; Lee YT; Ozaki T
    J Phys Condens Matter; 2018 Jul; 30(29):295502. PubMed ID: 29873298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolding method for periodic twisted systems with commensurate Moiré patterns.
    Sánchez-Ochoa F; Hidalgo F; Pruneda M; Noguez C
    J Phys Condens Matter; 2020 Jan; 32(2):025501. PubMed ID: 31530768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study.
    Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W
    J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of site symmetry in supercell models of defective crystals: polarons in CeO
    Evarestov RA; Gryaznov D; Arrigoni M; Kotomin EA; Chesnokov A; Maier J
    Phys Chem Chem Phys; 2017 Mar; 19(12):8340-8348. PubMed ID: 28280805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unfolding method for first-principles LCAO electronic structure calculations.
    Lee CC; Yamada-Takamura Y; Ozaki T
    J Phys Condens Matter; 2013 Aug; 25(34):345501. PubMed ID: 23912816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of extended line defects on thermal conduction of carbon nanotubes: analyzing phonon structures by band unfolding.
    Huang H
    J Phys Condens Matter; 2015 Aug; 27(30):305402. PubMed ID: 26174107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All Magic Angles in Twisted Bilayer Graphene are Topological.
    Song Z; Wang Z; Shi W; Li G; Fang C; Bernevig BA
    Phys Rev Lett; 2019 Jul; 123(3):036401. PubMed ID: 31386469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Bloch Band Theory of Non-Hermitian Systems.
    Yokomizo K; Murakami S
    Phys Rev Lett; 2019 Aug; 123(6):066404. PubMed ID: 31491170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integral algorithm and density matrix integration scheme for ab initio band structure calculations on polymeric systems.
    Jacquemin D; Champagne B; André JM; Deumens E; Ohrn Y
    J Comput Chem; 2002 Nov; 23(15):1430-44. PubMed ID: 12370945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mirrors of Bonding in Metal Halide Perovskites.
    Goesten MG; Hoffmann R
    J Am Chem Soc; 2018 Oct; 140(40):12996-13010. PubMed ID: 30207152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.