These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 31968327)

  • 1. Optimized interfacial thermal coupling between two nonlinear systems.
    Lu L; Xiong G; Huang Y; Ma D; Zhong M; Zhang L
    J Phys Condens Matter; 2020 May; 32(19):19LT02. PubMed ID: 31968327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial thermal transport of graphene/β-Ga
    Dong S; Yang B; Xin Q; Lan X; Wang X; Xin G
    Phys Chem Chem Phys; 2022 Jun; 24(21):12837-12848. PubMed ID: 35475984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface thermal resistance induced by geometric shape mismatch: A multiparticle Lorentz gas model.
    Wang T; Yang Y; Wu Y; Xu L; Ma D; Zhang L
    Phys Rev E; 2021 Aug; 104(2-1):024801. PubMed ID: 34525599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced energy transport owing to nonlinear interface interaction.
    Su R; Yuan Z; Wang J; Zheng Z
    Sci Rep; 2016 Jan; 6():19628. PubMed ID: 26787363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of phosphorene/graphene heterojunctions for high and tunable interfacial thermal conductance.
    Liu X; Gao J; Zhang G; Zhang YW
    Nanoscale; 2018 Nov; 10(42):19854-19862. PubMed ID: 30335107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial thermal conduction and negative temperature jump in one-dimensional lattices.
    Cao X; He D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032135. PubMed ID: 26465454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Structure Effect of a Self-Assembled Monolayer on Thermal Resistance across an Interface.
    Song L; Zhang Y; Yang W; Tan J; Cheng L
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Kapitza resistance at fluid-solid interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    J Chem Phys; 2019 Nov; 151(19):194502. PubMed ID: 31757152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat dissipation at a graphene-substrate interface.
    Xu Z; Buehler MJ
    J Phys Condens Matter; 2012 Nov; 24(47):475305. PubMed ID: 23123865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-dimensional harmonic chain model of vibration-mode matching in solid-liquid interfacial thermal transport.
    Matsubara H; Surblys D; Ohara T
    Phys Rev E; 2023 Feb; 107(2-1):024103. PubMed ID: 36932576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of strain and defects on the thermal conductance of the graphene/hexagonal boron nitride interface.
    Song J; Xu Z; He X; Cai C; Bai Y; Miao L; Wang R
    Phys Chem Chem Phys; 2020 May; 22(20):11537-11545. PubMed ID: 32393941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics study of interfacial thermal transport between silicene and substrates.
    Zhang J; Hong Y; Tong Z; Xiao Z; Bao H; Yue Y
    Phys Chem Chem Phys; 2015 Oct; 17(37):23704-10. PubMed ID: 26266456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonon thermal conduction in a graphene-C
    Han D; Wang X; Ding W; Chen Y; Zhang J; Xin G; Cheng L
    Nanotechnology; 2019 Feb; 30(7):075403. PubMed ID: 30524108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring anharmonic phonon transport across interfaces in one-dimensional lattice chains.
    Fang J; Qian X; Zhao CY; Li B; Gu X
    Phys Rev E; 2020 Feb; 101(2-1):022133. PubMed ID: 32168675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can Adhesion Energy Optimize Interface Thermal Resistance at a Soft/Hard Material Interface?
    Cheng X; He D; Zhou M; Zhang P; Wang S; Ren L; Sun R; Zeng X
    Nano Lett; 2023 Jul; 23(14):6673-6680. PubMed ID: 37428875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics.
    Zhou Y; Anglin B; Strachan A
    J Chem Phys; 2007 Nov; 127(18):184702. PubMed ID: 18020653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Interface Thermal Resistance between Polymer and Mold Insert in Micro-Injection Molding by Non-Equilibrium Molecular Dynamics.
    Weng C; Li J; Lai J; Liu J; Wang H
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33086641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized couplers for interfacial thermal transport.
    Chen B; Zhang L
    J Phys Condens Matter; 2015 Apr; 27(12):125401. PubMed ID: 25739385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.