These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31968329)

  • 1. First-principles study of stability, electronic structure and quantum capacitance of B-, N- and O-doped graphynes as supercapacitor electrodes.
    Chen X; Xu W; Song B; He P
    J Phys Condens Matter; 2020 May; 32(21):215501. PubMed ID: 31968329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Quantum Capacitance of Graphene-Based Supercapacitors by the Doping and Co-Doping: First-Principles Calculations.
    Xu Q; Yang G; Fan X; Zheng W
    ACS Omega; 2019 Aug; 4(8):13209-13217. PubMed ID: 31460448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doping and vacancy effects of graphyne on SO
    Kim S; Lee JY
    J Colloid Interface Sci; 2017 May; 493():123-129. PubMed ID: 28088564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the appropriateness of γ-graphyne derivatives as electrode materials for supercapacitors.
    Kenarsari MA; Vafaee M; Nasrollahpour M; Khoshdel SMM
    Sci Rep; 2023 Sep; 13(1):15090. PubMed ID: 37699919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Electronic Structure, Thermal Conductivity, Elastic and Optical Properties of α, β, γ-Graphyne.
    Hou X; Xie Z; Li C; Li G; Chen Z
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29370070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Alkali Metal Doping and BN Substitution on the Second-Order Nonlinear Optical Properties of Graphyne: A Theoretical Perspective.
    Hou N; Fang XH
    Inorg Chem; 2022 Jul; 61(28):10756-10767. PubMed ID: 35794725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A ball-milling synthesis of N-graphyne with controllable nitrogen doping sites for efficient electrocatalytic oxygen evolution and supercapacitors.
    Ding W; Sun M; Gao B; Liu W; Ding Z; Anandan S
    Dalton Trans; 2020 Aug; 49(31):10958-10969. PubMed ID: 32725021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring doped or vacancy-modified graphene-based electrodes for applications in asymmetric supercapacitors.
    da Silva DAC; Paulista Neto AJ; Pascon AM; Fileti EE; Fonseca LRC; Zanin HG
    Phys Chem Chem Phys; 2020 Feb; 22(7):3906-3913. PubMed ID: 32016251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound-promoted synthesis of γ-graphyne for supercapacitor and photoelectrochemical applications.
    Ding W; Sun M; Zhang Z; Lin X; Gao B
    Ultrason Sonochem; 2020 Mar; 61():104850. PubMed ID: 31698197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unexpected NMR shieldings of sp- and sp
    Štěpánek P; Lantto P
    Phys Chem Chem Phys; 2022 Oct; 24(41):25513-25521. PubMed ID: 36254618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How graphenic are graphynes? Evidence for low-lying correlated gapped states in graphynes.
    Lleopart G; Lopez-Suarez M; de P R Moreira I; Bromley ST
    J Chem Phys; 2022 Dec; 157(21):214704. PubMed ID: 36511546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and Thermal Stability of Graphyne and Graphdiyne Nanoscroll Structures.
    Solis DA; D Borges D; Woellner CF; Galvão DS
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2670-2676. PubMed ID: 29916238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bending deformation modulation of the optoelectronic properties of molybdenum ditelluride doped with nonmetallic atoms X (X = B, C, N, O): a first-principles study.
    Dai Y; Liu G; He J; Yang Z; Zhang G
    J Mol Model; 2024 Mar; 30(4):94. PubMed ID: 38443609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelectric Properties of Pristine Graphyne and the BN-Doped Graphyne Family.
    Deb J; Mondal R; Sarkar U; Sadeghi H
    ACS Omega; 2021 Aug; 6(31):20149-20157. PubMed ID: 34395966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications.
    Han J; Zhang LL; Lee S; Oh J; Lee KS; Potts JR; Ji J; Zhao X; Ruoff RS; Park S
    ACS Nano; 2013 Jan; 7(1):19-26. PubMed ID: 23244292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic electronic and transport properties of graphyne sheets and nanoribbons.
    Wu W; Guo W; Zeng XC
    Nanoscale; 2013 Oct; 5(19):9264-76. PubMed ID: 23949158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developments in Synthesis and Potential Electronic and Magnetic Applications of Pristine and Doped Graphynes.
    Abdi G; Alizadeh A; Grochala W; Szczurek A
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study.
    Wu M; Cao C; Jiang JZ
    Nanotechnology; 2010 Dec; 21(50):505202. PubMed ID: 21098927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition for graphene: graphynes with direction-dependent Dirac cones.
    Malko D; Neiss C; Viñes F; Görling A
    Phys Rev Lett; 2012 Feb; 108(8):086804. PubMed ID: 22463556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore size effect of graphyne supports on CO
    Ni Y; Miao L; Wang J; Liu J; Yuan M; Chen J
    Phys Chem Chem Phys; 2020 Jan; 22(3):1181-1186. PubMed ID: 31848554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.