BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31968480)

  • 1. Micropatterning of Metal-Grid Micro Electro Mechanical Systems (MEMS) Sensor for Crack Detection Using Electrohydrodynamic Printing System.
    Lee YC; Leeghim H; Lee CY
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4385-4389. PubMed ID: 31968480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crack Detecting Method Based on Grid-Type Sensing Networks Using Electrical Signals.
    Ahn JH; Lee YC; Jeong SM; Kim HN; Lee CY
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic Crack Sensors Using Electrohydrodynamic Technology.
    Kim KY; Jeong SM; Lee CY
    J Nanosci Nanotechnol; 2021 Jul; 21(7):3773-3778. PubMed ID: 33715690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-Sensing Inks Using Electrohydrodynamic Inkjet Printing Technology.
    Ahn JH; Hong HJ; Lee CY
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Temperature Sensors for Detection of Heat Sources Using Additive Printing Method.
    Ahn JH; Kim HN; Cho JY; Kim JH; Lee CY
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrohydrodynamic Printed Ultra-Micro AgNPs Thin Film Temperature Sensors Array for High-Resolution Sensing.
    He Y; Li L; Su Z; Xu L; Guo M; Duan B; Wang W; Cheng B; Sun D; Hai Z
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Experimental Verification of Direct-Write Silver Conductive Grid and ARIMA Time Series Analysis for Crack Propagation.
    Kurnyta A; Baran M; Kurnyta-Mazurek P; Kowalczyk K; Dziendzikowski M; Dragan K
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing.
    Lee A; Jin H; Dang HW; Choi KH; Ahn KH
    Langmuir; 2013 Nov; 29(44):13630-9. PubMed ID: 24102618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-sensitive Pressure sensor based on guided straight mechanical cracks.
    Choi YW; Kang D; Pikhitsa PV; Lee T; Kim SM; Lee G; Tahk D; Choi M
    Sci Rep; 2017 Jan; 7():40116. PubMed ID: 28059136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drop-on-demand printing of carbon black ink by electrohydrodynamic jet printing.
    Back SY; Song CH; Yu S; Lee HJ; Kim BS; Yang NY; Jeong SH; Ahn H
    J Nanosci Nanotechnol; 2012 Jan; 12(1):446-50. PubMed ID: 22524000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution Patterning Using Two Modes of Electrohydrodynamic Jet: Drop on Demand and Near-field Electrospinning.
    Phung TH; Oh S; Kwon KS
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30059021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mode-tunable, micro/nanoscale electrohydrodynamic deposition techniques for optoelectronic device fabrication.
    Duan Y; Li H; Yang W; Shao Z; Wang Q; Huang Y; Yin Z
    Nanoscale; 2022 Sep; 14(37):13452-13472. PubMed ID: 36082930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crack-Based Sensor by Using the UV Curable Polyurethane-Acrylate Coated Film with V-Groove Arrays.
    Park J; Kim DS; Yoon Y; Shanmugasundaram A; Lee DW
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundamentals of Using Cracked Film Lithography to Pattern Transparent Conductive Metal Grids for Photovoltaics.
    Muzzillo CP; Reese MO; Mansfield LM
    Langmuir; 2020 May; 36(17):4630-4636. PubMed ID: 32275439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrohydrodynamic Printing of Microscale PEDOT:PSS-PEO Features with Tunable Conductive/Thermal Properties.
    Chang J; He J; Lei Q; Li D
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19116-19122. PubMed ID: 29745637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crack Identification in Necked Double Shear Lugs by Means of the Electro-Mechanical Impedance Method.
    Winklberger M; Kralovec C; Humer C; Heftberger P; Schagerl M
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks.
    Song H; Zhang J; Chen D; Wang K; Niu S; Han Z; Ren L
    Nanoscale; 2017 Jan; 9(3):1166-1173. PubMed ID: 28009874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of One-Dimensional Pillar Arrays by Electrohydrodynamic Jet Printing for Glucose Sensor.
    Go EB; Kim HT; Kim CY
    J Biomed Nanotechnol; 2017 Jan; 13(1):61-7. PubMed ID: 29372990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Metal Thickness on the Sensitivity of Crack-Based Sensors.
    Lee E; Kim T; Suh H; Kim M; Pikhitsa PV; Han S; Koh JS; Kang D
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaporation-Directed Crack-Patterning of Metal-Organic Framework Colloidal Films and Their Application as Photonic Sensors.
    Dalstein O; Gkaniatsou E; Sicard C; Sel O; Perrot H; Serre C; Boissière C; Faustini M
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14011-14015. PubMed ID: 28940925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.