These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31968506)

  • 1. Exciton Dephasing in Tungsten Diselenide Atomic Layer.
    Neupane T; Rice Q; Jung S; Tabibi B; Seo FJ
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4502-4504. PubMed ID: 31968506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes.
    Graham MW; Ma YZ; Green AA; Hersam MC; Fleming GR
    J Chem Phys; 2011 Jan; 134(3):034504. PubMed ID: 21261365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the Impact of Phonon Dephasing on the Coherence of a WSe_{2} Single-Photon Source via Cavity Quantum Electrodynamics.
    Mitryakhin VN; Steinhoff A; Drawer JC; Shan H; Florian M; Lackner L; Han B; Eilenberger F; Tongay SA; Watanabe K; Taniguchi T; Antón-Solanas C; Predojević A; Gies C; Esmann M; Schneider C
    Phys Rev Lett; 2024 May; 132(20):206903. PubMed ID: 38829069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Momentum-Dark Intervalley Exciton in Monolayer Tungsten Diselenide Brightened
    Li Z; Wang T; Jin C; Lu Z; Lian Z; Meng Y; Blei M; Gao M; Taniguchi T; Watanabe K; Ren T; Cao T; Tongay S; Smirnov D; Zhang L; Shi SF
    ACS Nano; 2019 Dec; 13(12):14107-14113. PubMed ID: 31765125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin-flip limited exciton dephasing in CdSe/ZnS colloidal quantum dots.
    Masia F; Accanto N; Langbein W; Borri P
    Phys Rev Lett; 2012 Feb; 108(8):087401. PubMed ID: 22463568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton dephasing in quantum dot molecules.
    Borri P; Langbein W; Woggon U; Schwab M; Bayer M; Fafard S; Wasilewski Z; Hawrylak P
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):267401. PubMed ID: 14754087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tightly bound excitons in monolayer WSe(2).
    He K; Kumar N; Zhao L; Wang Z; Mak KF; Zhao H; Shan J
    Phys Rev Lett; 2014 Jul; 113(2):026803. PubMed ID: 25062219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic Phonon Scattering Dominates Dephasing in Weakly Confined Cesium Lead Bromide Nanocrystals at Cryogenic Temperatures.
    Sun W; Krajewska CJ; Kaplan AEK; Šverko T; Berkinsky DB; Ginterseder M; Utzat H; Bawendi MG
    Nano Lett; 2023 Apr; 23(7):2615-2622. PubMed ID: 36926921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermally-limited exciton delocalization in superradiant molecular aggregates.
    Arias DH; Stone KW; Vlaming SM; Walker BJ; Bawendi MG; Silbey RJ; Bulović V; Nelson KA
    J Phys Chem B; 2013 Apr; 117(16):4553-9. PubMed ID: 23199223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon-induced pure-dephasing of luminescence, multiple exciton generation, and fission in silicon clusters.
    Liu J; Neukirch AJ; Prezhdo OV
    J Chem Phys; 2013 Oct; 139(16):164303. PubMed ID: 24182025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon anharmonicity-induced decoherence slowing down in exciton-phonon systems.
    Pouthier V
    J Phys Condens Matter; 2010 Jun; 22(25):255601. PubMed ID: 21393804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Resonant Exciton in Monolayer Tungsten Diselenide Actuated by Spin-Orbit Coupling.
    Tang CS; Yin X; Yang M; Wu D; Birowosuto MD; Wu J; Li C; Hettiarachchi C; Chin XY; Chang YH; Ouyang F; Dang C; Pennycook SJ; Feng YP; Wang S; Chi D; Breese MBH; Zhang W; Rusydi A; Wee ATS
    ACS Nano; 2019 Dec; 13(12):14529-14539. PubMed ID: 31702890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiatively Limited Dephasing and Exciton Dynamics in MoSe2 Monolayers Revealed with Four-Wave Mixing Microscopy.
    Jakubczyk T; Delmonte V; Koperski M; Nogajewski K; Faugeras C; Langbein W; Potemski M; Kasprzak J
    Nano Lett; 2016 Sep; 16(9):5333-9. PubMed ID: 27517124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast exciton dephasing in semiconducting single-walled carbon nanotubes.
    Ma YZ; Graham MW; Fleming GR; Green AA; Hersam MC
    Phys Rev Lett; 2008 Nov; 101(21):217402. PubMed ID: 19113450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-time correlation in non-Markovian dephasing of an exciton-phonon system in InAs quantum dots.
    Tahara H; Ogawa Y; Minami F; Akahane K; Sasaki M
    Phys Rev Lett; 2014 Apr; 112(14):147404. PubMed ID: 24766013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton-phonon interaction in quasi-two dimensional layered (PEA)
    Long H; Peng X; Lu J; Lin K; Xie L; Zhang B; Ying L; Wei Z
    Nanoscale; 2019 Nov; 11(45):21867-21871. PubMed ID: 31696891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton-acoustic phonon coupling revealed by resonant excitation of single perovskite nanocrystals.
    Lv Y; Yin C; Zhang C; Wang X; Yu ZG; Xiao M
    Nat Commun; 2021 Apr; 12(1):2192. PubMed ID: 33850150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic scattering theory for excitation-induced dephasing: Time-dependent nonlinear coherent exciton lineshapes.
    Srimath Kandada AR; Li H; Thouin F; Bittner ER; Silva C
    J Chem Phys; 2020 Oct; 153(16):164706. PubMed ID: 33138398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon-induced dephasing of excitons in semiconductor quantum dots: multiple exciton generation, fission, and luminescence.
    Madrid AB; Hyeon-Deuk K; Habenicht BF; Prezhdo OV
    ACS Nano; 2009 Sep; 3(9):2487-94. PubMed ID: 19722505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.