These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31968562)

  • 1. High-Repetition-Rate Femtosecond Laser Processing of Acrylic Intra-Ocular Lenses.
    Sola D; Cases R
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31968562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Thermal Accumulation on the Fabrication of Diffraction Gratings in Ophthalmic PHEMA by Ultrashort Laser Direct Writing.
    Sola D; Aldana JRV; Artal P
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33322569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of high-repetition-rate femtosecond laser micromachining on the physical and chemical properties of polylactide (PLA).
    Jia W; Luo Y; Yu J; Liu B; Hu M; Chai L; Wang C
    Opt Express; 2015 Oct; 23(21):26932-9. PubMed ID: 26480354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maskless lithography using silicon oxide etch-stop layer induced by megahertz repetition femtosecond laser pulses.
    Kiani A; Venkatakrishnan K; Tan B; Venkataramanan V
    Opt Express; 2011 May; 19(11):10834-42. PubMed ID: 21643340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Laser Interference Patterning of Diffraction Gratings in Safrofilcon-A Hydrogel: Fabrication and Hydration Assessment.
    Sola D; Milles S; Lasagni AF
    Polymers (Basel); 2021 Feb; 13(5):. PubMed ID: 33668214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intratissue refractive index shaping (IRIS) of the cornea and lens using a low-pulse-energy femtosecond laser oscillator.
    Ding L; Knox WH; Bühren J; Nagy LJ; Huxlin KR
    Invest Ophthalmol Vis Sci; 2008 Dec; 49(12):5332-9. PubMed ID: 18641284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Heat Accumulation on Morphology Debris Deposition and Wetting of LIPSS on Steel upon High Repetition Rate Femtosecond Pulses Irradiation.
    Florian C; Fuentes-Edfuf Y; Skoulas E; Stratakis E; Sanchez-Cortes S; Solis J; Siegel J
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofabrication of Bulk Diffraction Nanogratings via Direct Ultrashort-Pulse Laser Micro-Inscription in Elastomers and Heat-Shrinkable Polymers.
    Kesaev V; Rupasov A; Smirnov N; Pakholchuk P; Kudryashov S; Odintsova G
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800 nm.
    Allsop T; Dubov M; Mezentsev V; Bennion I
    Appl Opt; 2010 Apr; 49(10):1938-50. PubMed ID: 20357880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-Scale and Localized Laser Crystallization of Optically Thick Amorphous Silicon Films by Near-IR Femtosecond Pulses.
    Bronnikov K; Dostovalov A; Cherepakhin A; Mitsai E; Nepomniaschiy A; Kulinich SA; Zhizhchenko A; Kuchmizhak A
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33238502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QR code micro-certified gemstones: femtosecond writing and Raman characterization in Diamond, Ruby and Sapphire.
    Batista AJ; Vianna PG; Ribeiro HB; Matos CJS; Gomes ASL
    Sci Rep; 2019 Jun; 9(1):8927. PubMed ID: 31222126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond laser induced selective etching in fused silica: optimization of the inscription conditions with a high-repetition-rate laser source.
    Qi J; Wang Z; Xu J; Lin Z; Li X; Chu W; Cheng Y
    Opt Express; 2018 Nov; 26(23):29669-29678. PubMed ID: 30469928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of 100-nm periodic structures on a titanium surface by exploiting the oxidation and third harmonic generation induced by femtosecond laser pulses.
    Li XF; Zhang CY; Li H; Dai QF; Lan S; Tie SL
    Opt Express; 2014 Nov; 22(23):28086-99. PubMed ID: 25402049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous formation of 10-μm-scale periodic patterns in transverse-scanning femtosecond laser processing.
    Matsuo S; Hashimoto S
    Opt Express; 2015 Jan; 23(1):165-71. PubMed ID: 25835663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser.
    Zheng C; Hu A; Li R; Bridges D; Chen T
    Opt Express; 2015 Jun; 23(13):17584-98. PubMed ID: 26191766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers.
    Ding L; Blackwell RI; Künzler JF; Knox WH
    Appl Opt; 2008 Jun; 47(17):3100-8. PubMed ID: 18545281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Burst-mode thulium all-fiber laser delivering femtosecond pulses at a 1  GHz intra-burst repetition rate.
    Elahi P; Kalaycioğlu H; Akçaalan Ö; Şenel Ç; Ömer Ilday F
    Opt Lett; 2017 Oct; 42(19):3808-3811. PubMed ID: 28957134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses.
    Nejadmalayeri AH; Herman PR; Burghoff J; Will M; Nolte S; Tünnermann A
    Opt Lett; 2005 May; 30(9):964-6. PubMed ID: 15906971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creation of a refractive lens within an existing intraocular lens using a femtosecond laser.
    Sahler R; Bille JF; Enright S; Chhoeung S; Chan K
    J Cataract Refract Surg; 2016 Aug; 42(8):1207-15. PubMed ID: 27531298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 75 MHz light source for femtosecond stimulated raman microscopy.
    Ploetz E; Marx B; Klein T; Huber R; Gilch P
    Opt Express; 2009 Oct; 17(21):18612-20. PubMed ID: 20372592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.