These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 31968674)
1. Structural Analyses on the Deamidation of N-Terminal Asn in the Human N-Degron Pathway. Park JS; Lee JY; Nguyen YTK; Kang NW; Oh EK; Jang DM; Kim HJ; Kim DD; Han BW Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31968674 [TBL] [Abstract][Full Text] [Related]
2. Structural basis for dual specificity of yeast N-terminal amidase in the N-end rule pathway. Kim MK; Oh SJ; Lee BG; Song HK Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12438-12443. PubMed ID: 27791147 [TBL] [Abstract][Full Text] [Related]
3. Expression and biochemical characterization of the human enzyme N-terminal asparagine amidohydrolase. Cantor JR; Stone EM; Georgiou G Biochemistry; 2011 Apr; 50(14):3025-33. PubMed ID: 21375249 [TBL] [Abstract][Full Text] [Related]
4. Structural study for substrate recognition of human N-terminal glutamine amidohydrolase 1 in the arginine N-degron pathway. Kang JM; Park JS; Lee JS; Jang JY; Han BW Protein Sci; 2024 Jul; 33(7):e5067. PubMed ID: 38864716 [TBL] [Abstract][Full Text] [Related]
5. A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway. Grigoryev S; Stewart AE; Kwon YT; Arfin SM; Bradshaw RA; Jenkins NA; Copeland NG; Varshavsky A J Biol Chem; 1996 Nov; 271(45):28521-32. PubMed ID: 8910481 [TBL] [Abstract][Full Text] [Related]
6. Five enzymes of the Arg/N-degron pathway form a targeting complex: The concept of superchanneling. Oh JH; Hyun JY; Chen SJ; Varshavsky A Proc Natl Acad Sci U S A; 2020 May; 117(20):10778-10788. PubMed ID: 32366662 [TBL] [Abstract][Full Text] [Related]
7. Stimulation of ubiquitin-proteasome pathway through the expression of amidohydrolase for N-terminal asparagine (Ntan1) in cultured rat hippocampal neurons exposed to static magnetism. Hirai T; Taniura H; Goto Y; Ogura M; Sng JC; Yoneda Y J Neurochem; 2006 Mar; 96(6):1519-30. PubMed ID: 16539681 [TBL] [Abstract][Full Text] [Related]
8. The effects of a histidine residue on the C-terminal side of an asparaginyl residue on the rate of deamidation using model pentapeptides. Goolcharran C; Stauffer LL; Cleland JL; Borchardt RT J Pharm Sci; 2000 Jun; 89(6):818-25. PubMed ID: 10824141 [TBL] [Abstract][Full Text] [Related]
9. Altered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N-end rule pathway. Kwon YT; Balogh SA; Davydov IV; Kashina AS; Yoon JK; Xie Y; Gaur A; Hyde L; Denenberg VH; Varshavsky A Mol Cell Biol; 2000 Jun; 20(11):4135-48. PubMed ID: 10805755 [TBL] [Abstract][Full Text] [Related]
10. Deamidation of labile asparagine residues in the autoregulatory sequence of human phenylalanine hydroxylase. Solstad T; Carvalho RN; Andersen OA; Waidelich D; Flatmark T Eur J Biochem; 2003 Mar; 270(5):929-38. PubMed ID: 12603326 [TBL] [Abstract][Full Text] [Related]
11. Structural basis for the N-degron specificity of ClpS1 from Arabidopsis thaliana. Kim L; Heo J; Kwon DH; Shin JS; Jang SH; Park ZY; Song HK Protein Sci; 2021 Mar; 30(3):700-708. PubMed ID: 33368743 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of human protein N-terminal glutamine amidohydrolase, an initial component of the N-end rule pathway. Park MS; Bitto E; Kim KR; Bingman CA; Miller MD; Kim HJ; Han BW; Phillips GN PLoS One; 2014; 9(10):e111142. PubMed ID: 25356641 [TBL] [Abstract][Full Text] [Related]
13. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides. Patel K; Borchardt RT Pharm Res; 1990 Aug; 7(8):787-93. PubMed ID: 2235875 [TBL] [Abstract][Full Text] [Related]
14. Structural basis of the water-assisted asparagine recognition by asparaginyl-tRNA synthetase. Iwasaki W; Sekine S; Kuroishi C; Kuramitsu S; Shirouzu M; Yokoyama S J Mol Biol; 2006 Jul; 360(2):329-42. PubMed ID: 16753178 [TBL] [Abstract][Full Text] [Related]
15. Product catalyzes the deamidation of D145N dehalogenase to produce the wild-type enzyme. Xiang H; Dong J; Carey PR; Dunaway-Mariano D Biochemistry; 1999 Mar; 38(13):4207-13. PubMed ID: 10194337 [TBL] [Abstract][Full Text] [Related]
16. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides. Tyler-Cross R; Schirch V J Biol Chem; 1991 Nov; 266(33):22549-56. PubMed ID: 1939272 [TBL] [Abstract][Full Text] [Related]
17. Protein NH2-terminal asparagine deamidase. Isolation and characterization of a new enzyme. Stewart AE; Arfin SM; Bradshaw RA J Biol Chem; 1994 Sep; 269(38):23509-17. PubMed ID: 8089117 [TBL] [Abstract][Full Text] [Related]
18. Structure and characterization of amidase from Rhodococcus sp. N-771: Insight into the molecular mechanism of substrate recognition. Ohtaki A; Murata K; Sato Y; Noguchi K; Miyatake H; Dohmae N; Yamada K; Yohda M; Odaka M Biochim Biophys Acta; 2010 Jan; 1804(1):184-92. PubMed ID: 19819352 [TBL] [Abstract][Full Text] [Related]
19. Deamidations in recombinant human phenylalanine hydroxylase. Identification of labile asparagine residues and functional characterization of Asn --> Asp mutant forms. Carvalho RN; Solstad T; Bjørgo E; Barroso JF; Flatmark T J Biol Chem; 2003 Apr; 278(17):15142-52. PubMed ID: 12554741 [TBL] [Abstract][Full Text] [Related]
20. Spontaneous chemical reversion of an active site mutation: deamidation of an asparagine residue replacing the catalytic aspartic acid of glutamate dehydrogenase. Paradisi F; Dean JL; Geoghegan KF; Engel PC Biochemistry; 2005 Mar; 44(9):3636-43. PubMed ID: 15736973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]