These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 31968824)
1. Metal-Organic Frameworks M-MOF-74 and M-MIL-100: Comparison of Textural, Acidic, and Catalytic Properties. Palomino Cabello C; Gómez-Pozuelo G; Opanasenko M; Nachtigall P; Čejka J Chempluschem; 2016 Aug; 81(8):828-835. PubMed ID: 31968824 [TBL] [Abstract][Full Text] [Related]
2. Brønsted instead of Lewis acidity in functionalized MIL-101Cr MOFs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols. Herbst A; Khutia A; Janiak C Inorg Chem; 2014 Jul; 53(14):7319-33. PubMed ID: 25006999 [TBL] [Abstract][Full Text] [Related]
3. Superior Activity of Isomorphously Substituted MOFs with MIL-100(M=Al, Cr, Fe, In, Sc, V) Structure in the Prins Reaction: Impact of Metal Type. Gómez-Pozuelo G; Cabello CP; Opanasenko M; Horáček M; Čejka J Chempluschem; 2017 Jan; 82(1):152-159. PubMed ID: 31961502 [TBL] [Abstract][Full Text] [Related]
4. Strategies for Enhancing the Catalytic Performance of Metal-Organic Frameworks in the Fixation of CO Taherimehr M; Van de Voorde B; Wee LH; Martens JA; De Vos DE; Pescarmona PP ChemSusChem; 2017 Mar; 10(6):1283-1291. PubMed ID: 27991727 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and Catalytic Performance of Hierarchically Porous MIL-100(Fe)@polyHIPE Hybrid Membranes. Kovačič S; Mazaj M; Ješelnik M; Pahovnik D; Žagar E; Slugovc C; Logar NZ Macromol Rapid Commun; 2015 Sep; 36(17):1605-11. PubMed ID: 26173197 [TBL] [Abstract][Full Text] [Related]
6. Mixed-metal MIL-100(Sc,M) (M=Al, Cr, Fe) for Lewis acid catalysis and tandem C-C bond formation and alcohol oxidation. Mitchell L; Williamson P; Ehrlichová B; Anderson AE; Seymour VR; Ashbrook SE; Acerbi N; Daniels LM; Walton RI; Clarke ML; Wright PA Chemistry; 2014 Dec; 20(51):17185-97. PubMed ID: 25348903 [TBL] [Abstract][Full Text] [Related]
7. Brønsted-Lewis dual acid sites in a chromium-based metal-organic framework for cooperative catalysis: Highly efficient synthesis of quinazolin-(4H)-1-one derivatives. Oudi S; Oveisi AR; Daliran S; Khajeh M; Teymoori E J Colloid Interface Sci; 2020 Mar; 561():782-792. PubMed ID: 31761467 [TBL] [Abstract][Full Text] [Related]
8. Dialing in Catalytic Sites on Metal Organic Framework Nodes: MIL-53(Al) and MIL-68(Al) Probed with Methanol Dehydration Catalysis. Wang Z; Babucci M; Zhang Y; Wen Y; Peng L; Yang B; Gates BC; Yang D ACS Appl Mater Interfaces; 2020 Nov; 12(47):53537-53546. PubMed ID: 33180462 [TBL] [Abstract][Full Text] [Related]
9. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid. Chen J; Wang S; Huang J; Chen L; Ma L; Huang X ChemSusChem; 2013 Aug; 6(8):1545-55. PubMed ID: 23619979 [TBL] [Abstract][Full Text] [Related]
10. Exploring the Tunability of Trimetallic MOF Nodes for Partial Oxidation of Methane to Methanol. Barona M; Snurr RQ ACS Appl Mater Interfaces; 2020 Jun; 12(25):28217-28231. PubMed ID: 32427460 [TBL] [Abstract][Full Text] [Related]
11. Enzyme Encapsulation in Mesoporous Metal-Organic Frameworks for Selective Biodegradation of Harmful Dye Molecules. Gkaniatsou E; Sicard C; Ricoux R; Benahmed L; Bourdreux F; Zhang Q; Serre C; Mahy JP; Steunou N Angew Chem Int Ed Engl; 2018 Dec; 57(49):16141-16146. PubMed ID: 30307095 [TBL] [Abstract][Full Text] [Related]
12. Size selectivity of a copper metal-organic framework and origin of catalytic activity in epoxide alcoholysis. Jiang D; Urakawa A; Yulikov M; Mallat T; Jeschke G; Baiker A Chemistry; 2009 Nov; 15(45):12255-62. PubMed ID: 19806616 [TBL] [Abstract][Full Text] [Related]
13. Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples. Lirio S; Liu WL; Lin CL; Lin CH; Huang HY J Chromatogr A; 2016 Jan; 1428():236-45. PubMed ID: 26065570 [TBL] [Abstract][Full Text] [Related]
14. Chemical and thermal stability of isotypic metal-organic frameworks: effect of metal ions. Kang IJ; Khan NA; Haque E; Jhung SH Chemistry; 2011 May; 17(23):6437-42. PubMed ID: 21547968 [TBL] [Abstract][Full Text] [Related]
16. Gas Phase Sensing of Alcohols by Metal Organic Framework-Polymer Composite Materials. Sachdeva S; Koper SJH; Sabetghadam A; Soccol D; Gravesteijn DJ; Kapteijn F; Sudhölter EJR; Gascon J; de Smet LCPM ACS Appl Mater Interfaces; 2017 Jul; 9(29):24926-24935. PubMed ID: 28440621 [TBL] [Abstract][Full Text] [Related]
17. Superior performance of metal-organic frameworks over zeolites as solid acid catalysts in the Prins reaction: green synthesis of nopol. Opanasenko M; Dhakshinamoorthy A; Hwang YK; Chang JS; Garcia H; Čejka J ChemSusChem; 2013 May; 6(5):865-71. PubMed ID: 23592600 [TBL] [Abstract][Full Text] [Related]
18. Observation of Olefin/Paraffin Selectivity in Azo Compound and Its Application into a Metal-Organic Framework. Kim SY; Yoon TU; Kang JH; Kim AR; Kim TH; Kim SI; Park W; Kim KC; Bae YS ACS Appl Mater Interfaces; 2018 Aug; 10(32):27521-27530. PubMed ID: 30040880 [TBL] [Abstract][Full Text] [Related]
19. MIL-101-SO3H: a highly efficient Brønsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions. Zhou YX; Chen YZ; Hu Y; Huang G; Yu SH; Jiang HL Chemistry; 2014 Nov; 20(46):14976-80. PubMed ID: 25291973 [TBL] [Abstract][Full Text] [Related]
20. Metal Organic Framework (MOF) Particles as Potential Bacteria-Mimicking Delivery Systems for Infectious Diseases: Characterization and Cellular Internalization in Alveolar Macrophages. Guo A; Durymanov M; Permyakova A; Sene S; Serre C; Reineke J Pharm Res; 2019 Feb; 36(4):53. PubMed ID: 30790066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]