These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 3196944)

  • 1. [Changes in motor evoked potentials in experimental spinal cord injury].
    Yu CJ
    Zhonghua Yi Xue Za Zhi; 1988 May; 68(5):257-9, 18. PubMed ID: 3196944
    [No Abstract]   [Full Text] [Related]  

  • 2. Differential motor and electrophysiological outcome in rats with mid-thoracic or high lumbar incomplete spinal cord injuries.
    García-Alías G; Valero-Cabré A; López-Vales R; Forés J; Verdú E; Navarro X
    Brain Res; 2006 Sep; 1108(1):195-204. PubMed ID: 16859653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topical application of dynorphin A (1-17) antiserum attenuates trauma induced alterations in spinal cord evoked potentials, microvascular permeability disturbances, edema formation and cell injury: an experimental study in the rat using electrophysiological and morphological approaches.
    Winkler T; Sharma HS; Gordh T; Badgaiyan RD; Stålberg E; Westman J
    Amino Acids; 2002; 23(1-3):273-81. PubMed ID: 12373547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innervation and properties of the rat FDSBQ muscle: an animal model to evaluate voluntary muscle strength after incomplete spinal cord injury.
    Thomas CK; Esipenko V; Xu XM; Madsen PW; Gordon T
    Exp Neurol; 1999 Aug; 158(2):279-89. PubMed ID: 10415136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Descending modulation of the reflex reactions of the spinal motor neurons in human spinal cord damage].
    Piliavskiĭ AI; Iakhnitsa IA; Potekhin LD; Shpuntov AE
    Neirofiziologiia; 1988; 20(1):105-13. PubMed ID: 3380204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscular weakness in incomplete spinal cord injury.
    Rymer WZ; Powers RK
    Compr Ther; 1987 Jul; 13(7):3-7. PubMed ID: 3608398
    [No Abstract]   [Full Text] [Related]  

  • 7. Motor and somatosensory evoked potentials in a primate model of experimental spinal cord injury.
    Arunkumar MJ; Srinivasa Babu K; Chandy MJ
    Neurol India; 2001 Sep; 49(3):219-24. PubMed ID: 11593236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axonal changes in spinal cord injured patients distal to the site of injury.
    Lin CS; Macefield VG; Elam M; Wallin BG; Engel S; Kiernan MC
    Brain; 2007 Apr; 130(Pt 4):985-94. PubMed ID: 17264094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immediate plasticity in the motor pathways after spinal cord hemisection: implications for transcranial magnetic motor-evoked potentials.
    Fujiki M; Kobayashi H; Inoue R; Ishii K
    Exp Neurol; 2004 Jun; 187(2):468-77. PubMed ID: 15144873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurophysiological techniques in the evaluation of disorders of the spine.
    Schnitzler A; Kunesch E; Herdmann J
    Zentralbl Neurochir; 1995; 56(3):117-27. PubMed ID: 7483891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objective assessment of cervical spinal cord injury levels by transcranial magnetic motor-evoked potentials.
    Shields CB; Ping Zhang Y; Shields LB; Burke DA; Glassman SD
    Surg Neurol; 2006 Nov; 66(5):475-83; discussion 483. PubMed ID: 17084191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of calmodulin inhibitor on spinal cord injury].
    Zhang Y; Hou S; Liu R; Zhu Y; Liu Y
    Zhonghua Wai Ke Za Zhi; 1998 Dec; 36(12):721-3. PubMed ID: 11825508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of aminoguanidine on the recovery of rat hindlimb motor function after spinal cord injury.
    Zhang XY; Zhou CS; Jin AM; Tian J; Zhang H; Yao WT; Zheng G
    Di Yi Jun Yi Da Xue Xue Bao; 2003 Jul; 23(7):687-9. PubMed ID: 12865221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colonic dysfunction in patients with thoracic spinal cord injury.
    Glick ME; Meshkinpour H; Haldeman S; Hoehler F; Downey N; Bradley WE
    Gastroenterology; 1984 Feb; 86(2):287-94. PubMed ID: 6690355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortically evoked motor action potential in spinal cord injury research.
    Patil AA; Nagaraj MP; Mehta R
    Neurosurgery; 1985 Apr; 16(4):473-6. PubMed ID: 3990926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The efferent conduction of the spinal cord following trauma].
    Piliavskiĭ AI; Iakhnitsa IA; Potekhin LD; Shpuntov AE
    Fiziol Cheloveka; 1989; 15(6):145-7. PubMed ID: 2632316
    [No Abstract]   [Full Text] [Related]  

  • 18. Animal models of spinal cord contusion injuries.
    Khan T; Havey RM; Sayers ST; Patwardhan A; King WW
    Lab Anim Sci; 1999 Apr; 49(2):161-72. PubMed ID: 10331546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of spinal cord ischemia on evoked potential recovery and postischemic regional spinal cord blood flow.
    Osenbach RK; Hitchon PW; Mouw L; Yamada T
    J Spinal Disord; 1993 Apr; 6(2):146-54. PubMed ID: 8504227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary changes in segmental neurons below a spinal cord lesion in man.
    Hunter J; Ashby P
    Arch Phys Med Rehabil; 1984 Nov; 65(11):702-5. PubMed ID: 6497617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.