These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 31969661)

  • 1. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.
    Villegas M; Cetinic Z; Shakeri A; Didar TF
    Anal Chim Acta; 2018 Feb; 1000():248-255. PubMed ID: 29289317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printing of transparent bio-microfluidic devices in PEG-DA.
    Urrios A; Parra-Cabrera C; Bhattacharjee N; Gonzalez-Suarez AM; Rigat-Brugarolas LG; Nallapatti U; Samitier J; DeForest CA; Posas F; Garcia-Cordero JL; Folch A
    Lab Chip; 2016 Jun; 16(12):2287-94. PubMed ID: 27217203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The upcoming 3D-printing revolution in microfluidics.
    Bhattacharjee N; Urrios A; Kang S; Folch A
    Lab Chip; 2016 May; 16(10):1720-42. PubMed ID: 27101171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PDMS Curing Inhibition on 3D-Printed Molds: Why? Also, How to Avoid It?
    Venzac B; Deng S; Mahmoud Z; Lenferink A; Costa A; Bray F; Otto C; Rolando C; Le Gac S
    Anal Chem; 2021 May; 93(19):7180-7187. PubMed ID: 33961394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip.
    Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A
    Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic devices manufacturing with a stereolithographic printer for biological applications.
    Carnero B; Bao-Varela C; Gómez-Varela AI; Álvarez E; Flores-Arias MT
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112388. PubMed ID: 34579907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Desktop-Stereolithography 3D-Printing of a Poly(dimethylsiloxane)-Based Material with Sylgard-184 Properties.
    Bhattacharjee N; Parra-Cabrera C; Kim YT; Kuo AP; Folch A
    Adv Mater; 2018 May; 30(22):e1800001. PubMed ID: 29656459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices.
    Carrell CS; McCord CP; Wydallis RM; Henry CS
    Anal Chim Acta; 2020 Aug; 1124():78-84. PubMed ID: 32534678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed microfluidic devices for lipid bilayer recordings.
    Ogishi K; Osaki T; Morimoto Y; Takeuchi S
    Lab Chip; 2022 Mar; 22(5):890-898. PubMed ID: 35133381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of 3D-Printed Moulds for Soft Lithography of Millifluidic Devices.
    Mohd Fuad N; Carve M; Kaslin J; Wlodkowic D
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue.
    Brooks JC; Ford KI; Holder DH; Holtan MD; Easley CJ
    Analyst; 2016 Oct; 141(20):5714-5721. PubMed ID: 27486597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.