These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
483 related articles for article (PubMed ID: 31969661)
21. 3D printed microfluidic devices for lipid bilayer recordings. Ogishi K; Osaki T; Morimoto Y; Takeuchi S Lab Chip; 2022 Mar; 22(5):890-898. PubMed ID: 35133381 [TBL] [Abstract][Full Text] [Related]
22. 3D printable acrylate polydimethylsiloxane resins for cell culture and drug testing. Villata S; Canta M; Baruffaldi D; Pavan A; Chiappone A; Pirri CF; Frascella F; Roppolo I Biomater Sci; 2023 Apr; 11(8):2950-2959. PubMed ID: 36912680 [TBL] [Abstract][Full Text] [Related]
23. Design and Development of a Three-Dimensionally Printed Microscope Mask Alignment Adapter for the Fabrication of Multilayer Microfluidic Devices. Garcia CR; Ding Z; Garza HC; Li W J Vis Exp; 2021 Jan; (167):. PubMed ID: 33554971 [TBL] [Abstract][Full Text] [Related]
24. Fabricating self-powered microfluidic devices via 3D printing for manipulating fluid flow. Woo SO; Oh M; Choi Y STAR Protoc; 2022 Jun; 3(2):101376. PubMed ID: 35573475 [TBL] [Abstract][Full Text] [Related]
25. Characterization of 3D-Printed Moulds for Soft Lithography of Millifluidic Devices. Mohd Fuad N; Carve M; Kaslin J; Wlodkowic D Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424050 [TBL] [Abstract][Full Text] [Related]
26. Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design. Simmons DW; Schuftan DR; Ramahdita G; Huebsch N ACS Appl Mater Interfaces; 2023 May; 15(21):25313-25323. PubMed ID: 37200617 [TBL] [Abstract][Full Text] [Related]
27. Rapid prototyping of thermoplastic microfluidic devices via SLA 3D printing. Khoo H; Allen WS; Arroyo-CurrĂ¡s N; Hur SC Sci Rep; 2024 Jul; 14(1):17646. PubMed ID: 39085631 [TBL] [Abstract][Full Text] [Related]
28. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Kamei K; Mashimo Y; Koyama Y; Fockenberg C; Nakashima M; Nakajima M; Li J; Chen Y Biomed Microdevices; 2015 Apr; 17(2):36. PubMed ID: 25686903 [TBL] [Abstract][Full Text] [Related]
29. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices. Ozbolat V; Dey M; Ayan B; Ozbolat IT Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470 [TBL] [Abstract][Full Text] [Related]
30. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications. Park J; Li J; Han A Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640 [TBL] [Abstract][Full Text] [Related]
31. Rapid prototyping of cell culture microdevices using parylene-coated 3D prints. O'Grady BJ; Geuy MD; Kim H; Balotin KM; Allchin ER; Florian DC; Bute NN; Scott TE; Lowen GB; Fricker CM; Fitzgerald ML; Guelcher SA; Wikswo JP; Bellan LM; Lippmann ES Lab Chip; 2021 Dec; 21(24):4814-4822. PubMed ID: 34787148 [TBL] [Abstract][Full Text] [Related]
34. Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold. Kang K; Oh S; Yi H; Han S; Hwang Y Biomicrofluidics; 2018 Jan; 12(1):014105. PubMed ID: 29375726 [TBL] [Abstract][Full Text] [Related]
35. 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection. Arshavsky-Graham S; Enders A; Ackerman S; Bahnemann J; Segal E Mikrochim Acta; 2021 Feb; 188(3):67. PubMed ID: 33543321 [TBL] [Abstract][Full Text] [Related]
36. Development of a Custom-Made 3D Printing Protocol with Commercial Resins for Manufacturing Microfluidic Devices. Subirada F; Paoli R; Sierra-Agudelo J; Lagunas A; Rodriguez-Trujillo R; Samitier J Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890735 [TBL] [Abstract][Full Text] [Related]
37. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing. Musgrove HB; Catterton MA; Pompano RR Anal Chim Acta; 2022 May; 1209():339842. PubMed ID: 35569850 [TBL] [Abstract][Full Text] [Related]
38. Design and fabrication of chemically robust three-dimensional microfluidic valves. Maltezos G; Garcia E; Hanrahan G; Gomez FA; Vyawahare S; van Dam RM; Chen Y; Scherer A Lab Chip; 2007 Sep; 7(9):1209-11. PubMed ID: 17713623 [TBL] [Abstract][Full Text] [Related]
39. Rapid prototyping using 3D printing in bioanalytical research. Zhang C; Bills BJ; Manicke NE Bioanalysis; 2017 Feb; 9(4):329-331. PubMed ID: 28071134 [No Abstract] [Full Text] [Related]
40. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system. Riester O; Laufer S; Deigner HP J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]