BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 31969710)

  • 1. Targeting of temperate phages drives loss of type I CRISPR-Cas systems.
    Rollie C; Chevallereau A; Watson BNJ; Chyou TY; Fradet O; McLeod I; Fineran PC; Brown CM; Gandon S; Westra ER
    Nature; 2020 Feb; 578(7793):149-153. PubMed ID: 31969710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting.
    Goldberg GW; Jiang W; Bikard D; Marraffini LA
    Nature; 2014 Oct; 514(7524):633-7. PubMed ID: 25174707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incomplete prophage tolerance by type III-A CRISPR-Cas systems reduces the fitness of lysogenic hosts.
    Goldberg GW; McMillan EA; Varble A; Modell JW; Samai P; Jiang W; Marraffini LA
    Nat Commun; 2018 Jan; 9(1):61. PubMed ID: 29302058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-CRISPRs go viral: The infection biology of CRISPR-Cas inhibitors.
    Li Y; Bondy-Denomy J
    Cell Host Microbe; 2021 May; 29(5):704-714. PubMed ID: 33444542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploitation of the Cooperative Behaviors of Anti-CRISPR Phages.
    Chevallereau A; Meaden S; Fradet O; Landsberger M; Maestri A; Biswas A; Gandon S; van Houte S; Westra ER
    Cell Host Microbe; 2020 Feb; 27(2):189-198.e6. PubMed ID: 31901522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteriophage tRNA-dependent lysogeny: requirement of phage-encoded tRNA genes for establishment of lysogeny.
    Guerrero-Bustamante CA; Hatfull GF
    mBio; 2024 Feb; 15(2):e0326023. PubMed ID: 38236026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence.
    Tuttle MJ; Buchan A
    Environ Microbiol; 2020 Dec; 22(12):4919-4933. PubMed ID: 32935433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coevolution between bacterial CRISPR-Cas systems and their bacteriophages.
    Watson BNJ; Steens JA; Staals RHJ; Westra ER; van Houte S
    Cell Host Microbe; 2021 May; 29(5):715-725. PubMed ID: 33984274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meet the Anti-CRISPRs: Widespread Protein Inhibitors of CRISPR-Cas Systems.
    Hwang S; Maxwell KL
    CRISPR J; 2019 Feb; 2(1):23-30. PubMed ID: 31021234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
    Hoikkala V; Ravantti J; Díez-Villaseñor C; Tiirola M; Conrad RA; McBride MJ; Moineau S; Sundberg LR
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different genetic and morphological outcomes for phages targeted by single or multiple CRISPR-Cas spacers.
    Watson BNJ; Easingwood RA; Tong B; Wolf M; Salmond GPC; Staals RHJ; Bostina M; Fineran PC
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180090. PubMed ID: 30905290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stumbling across the Same Phage: Comparative Genomics of Widespread Temperate Phages Infecting the Fish Pathogen Vibrio anguillarum.
    Kalatzis PG; Rørbo NI; Castillo D; Mauritzen JJ; Jørgensen J; Kokkari C; Zhang F; Katharios P; Middelboe M
    Viruses; 2017 May; 9(5):. PubMed ID: 28531104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysogeny is prevalent and widely distributed in the murine gut microbiota.
    Kim MS; Bae JW
    ISME J; 2018 Apr; 12(4):1127-1141. PubMed ID: 29416123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Significance of Mutualistic Phages for Bacterial Ecology and Evolution.
    Obeng N; Pratama AA; Elsas JDV
    Trends Microbiol; 2016 Jun; 24(6):440-449. PubMed ID: 26826796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs.
    Trasanidou D; Gerós AS; Mohanraju P; Nieuwenweg AC; Nobrega FL; Staals RHJ
    FEMS Microbiol Lett; 2019 May; 366(9):. PubMed ID: 31077304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clades of huge phages from across Earth's ecosystems.
    Al-Shayeb B; Sachdeva R; Chen LX; Ward F; Munk P; Devoto A; Castelle CJ; Olm MR; Bouma-Gregson K; Amano Y; He C; Méheust R; Brooks B; Thomas A; Lavy A; Matheus-Carnevali P; Sun C; Goltsman DSA; Borton MA; Sharrar A; Jaffe AL; Nelson TC; Kantor R; Keren R; Lane KR; Farag IF; Lei S; Finstad K; Amundson R; Anantharaman K; Zhou J; Probst AJ; Power ME; Tringe SG; Li WJ; Wrighton K; Harrison S; Morowitz M; Relman DA; Doudna JA; Lehours AC; Warren L; Cate JHD; Santini JM; Banfield JF
    Nature; 2020 Feb; 578(7795):425-431. PubMed ID: 32051592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival Strategies of
    Beerens D; Franch-Arroyo S; Sullivan TJ; Goosmann C; Brinkmann V; Charpentier E
    Viruses; 2021 Apr; 13(4):. PubMed ID: 33918348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holding a grudge: persisting anti-phage CRISPR immunity in multiple human gut microbiomes.
    Mick E; Stern A; Sorek R
    RNA Biol; 2013 May; 10(5):900-6. PubMed ID: 23439321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phage-Encoded Anti-CRISPR Defenses.
    Stanley SY; Maxwell KL
    Annu Rev Genet; 2018 Nov; 52():445-464. PubMed ID: 30208287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Type I-F CRISPR-Cas resistance against virulent phages results in abortive infection and provides population-level immunity.
    Watson BNJ; Vercoe RB; Salmond GPC; Westra ER; Staals RHJ; Fineran PC
    Nat Commun; 2019 Dec; 10(1):5526. PubMed ID: 31797922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.